Weighted likelihood in Bayesian inference

Claudio Agostinelli and Luca Greco

Abstract The occurrence of anomalous values with respect to the specified model
can seriously alter the shape of the likelihood function and lead to posterior distri-
butions far from those one would obtain without these data inadequacies. In order
to deal with these hindrances, a robust approach is discussed, which allows us to
obtain outliers’ resistant posterior distributions with properties similar to those of a
proper posterior distribution. The methodology is based on the replacement of the
genuine likelihood by a weighted likelihood function in the Bayes’ formula.
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1 Introduction

The problem of formalizing subjective uncertainties in the probability model for the
data has a central role in Bayesian robustness [2, 4]. Model uncertainty, essentially,
comes from the presence of outliers, - observations that are highly unlikely to occur
under the assumed model— [6], as, for instance, they obey a different and unsus-
pected (hence unspecified) random mechanism. Actually, because of the presence of
some anomalous values, the information about the variations of statistical evidence,
summarized by the likelihood function, can be seriously misleading and invalidate
the updating mechanism of our initial knowledge. The application of the Bayes’
formula can lead to a posterior distribution whose shape may be dramatically differ-
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ent from that one would obtain when, for instance, no outliers are in the sample at
hand. Then, it seems reasonable to look for a methodology that results in outliers in-
sensitive posterior distributions and robust posterior summaries with respect to data
inadequacies.

One recent approach to handle uncertainty about the sampling model and to ob-
tain a robust posterior distribution has been outlined in [3]. The authors investigate
the use of a quasi-likelihood function with robustness properties in place of the gen-
uine likelihood function and prove its validity in order to perform Bayesian infer-
ence along the lines illustrated in [8, 5]. the empirical likelihood has been considered
as well.

Here, a more general strategy is discussed, which is based on the replacement of
the genuine likelihood by a weighted likelihood function in the Bayes’ formula. The
weighted likelihood is characterized by the introduction of a set of weights which are
aimed at down-weighting those likelihood single term components that correspond
to anomalous values in the sample at hand. Under the assumed model, the weighted
likelihood shares the main (asymptotic) features of the genuine likelihood function,
thus being valid for Bayesian inference. This means that, once one has assumed
a sampling model and a prior distribution, by applying the Bayes’ theorem this
strategy allows us to obtain a proper posterior distribution, i.e. that obeys probability
laws, and make reliable inference in the presence of anomalous data in the sample.

2 Weighted Likelihood

Let x = (xy,---,%,) be an i.i.d. sample of size n drawn from a random variable X
with unknown probability (density) function m(x|6), which is an element of the
parametric family .# = {m(x|8),0 € ® C RP}, with p > 1. Let £, be the empiri-
cal cumulative distribution function based on the sample x. A weighted likelihood
function can be defined as

17(6) = L"(x]8) = [ [mx]0)"™ | )
i=1

where w(-) is a bounded differentiable non negative (weight) function that may de-
pend on unknown quantities (say 1) and/or on the random sample x. In most cases
6 C n, but there are also cases where there is no relation between the two vectors.
Under the classical regularity assumptions on the likelihood, the properties of (1)
and related quantities are driven by the behavior of the weighted score function

=

s"(0) = 5"(x|0) = ), w(xi)s(xi[6) 2

i=1

where s(x|6) denotes the ordinary score function.



Weighted likelihood in Bayesian inference 3

Proposition 1. Let f) be a consistent estimator of the unknown parameter 1 and
E(s(X|0)?) < co. Assume that the weight function w(x; 1), F,) is such that

sup w(x: A, F) —c| 250 as n— oo,
X

where c is a positive constant. Then

n

% ; w(xi; 1, 6)s(x;|0) 5 ¢ E(s(X]6)) =0.

Proposition 1 provides a sufficient condition on the weight function such that the
equation (2) defines an unbiased estimating equation at the assumed model as well
as the ordinary score function. Similar results are also valid for other likelihood
based quantities.

A weight function satisfying Proposition 1 can be obtained by following the pro-
posal of [6] which is related to the minimum distance methods. This weight function

is defined as .
A(S(x;0,F,))+1

5 Fn = A )
w0, ) = = 3)
where i ‘(410
6()C;0,Fn) — f ('x)_m ('x| )

m*(x]6)

is the Pearson residual function, A(-) is the Residual Adjustment Function, f*(x) is
a nonparametric kernel density estimate and m*(x|€) is a smoothed version of the
model density obtained by using the same kernel function.

The weight function (3) depends on the unknown 6. As an estimate of 0, we take
the root By of the Weighted Likelihood Estimating Equations (WLEE)

ww (x:0,F,)s(x;]0) =0. )

™=

1

Under the assumed model (or equivalently, when no outliers occur) and clas-
sical regularity assumptions, as the sample size increases, all the weights de-
fined in (3), with 6 replaced by By, tend to unity uniformly almost surely, i.e.
¢ = 1. Therefore, éw is a consistent and first order efficient estimator of 0, that
is /n(Bw — 0) 4 N(0,i;'(8)) and, by Proposition 1, the resulting weighted like-
lihood function shares the same first order asymptotic properties of the genuine
likelihood function, hence leading to estimators and tests with the usual asymptotic
behavior [1].
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3 Weighted posterior distributions

In Bayesian inference, the posterior distribution 7(0|x) is obtained by combining
two sources of information about the random variable 8: one is the prior knowledge
about its distribution 7(6), the other is given by the observed data and is summa-
rized by the likelihood function. A weighted posterior distribution is defined by
replacing the genuine likelihood function by its weighted counterpart defined in (1),
ie.

" (0]x) < (6)L"(x]0) . 5)

In the following, we consider weights evaluated as in (3) of the form w(x;) =
ww (xi: O, Fy). As L (x|0) shares the first order properties of the genuine likelihood
function under the assumed model, it is valid for Bayesian inference in a standard
fashion.

This methodology has the great advantage, over the employ of other pseudo-
likelihood functions, to lead to posterior distributions which belong to the same
family of those one would obtain by using the genuine likelihood function. Hence,
the weighted posterior distribution will differ from the genuine posterior distribution
only for the value of its parameters.

The method may appear in conflict with a proper Bayesian perspective, since
the weighted likelihood is not directly driven by a probabilistic model, but by using
adaptive weights, we still make the all data tell their all story, as some values are
recognized as inconsistent with the model and these outliers are not simply deleted
but still contribute to posterior inference even if in a different fashion than ordinary.

3.1 Rats data

This data set [7] corresponds to an experiment on the speed of learning of a rat to
go through a shuttlebox in successive attempts. If the recorded time was larger than
5 seconds, the rat received an electric shock. The entries, for each observation, are
the average time for all attempts between shocks (Time) and the number of shocks
received (Shocks). The model is Time; = By + B Shocks; + ou;, i =1,2,...,16 and
the u;’s are i.i.d. standard normal variates. Because of the presence of three points
which, apparently, lie far from the others, a robust regression by weighted likelihood
[6], with a RAF based on the Hellinger distance, seems appropriate. The robust fit
strongly down—weights only observation n. 4. The weighted joint posterior distribu-
tion is

n”’(ﬁ,cﬂy)«cZ?lw"zexp{—w}exp{—;w BB B}

202

where 5% = (Y7, w; —2)" (B — Bw)TW (B — Bw).with W = diag(w;) and
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Fig. 1 Rats data. Contours of the marginal posterior density of (o, 81) by WLEE-weights (solid
line) and of the proper posterior density (dashed line).

V= ( Z?:]Wi Z?Hfiwz') ]

Y xiw Y xPw;

The weighted marginal posterior densities of (By,81) and 62 are displayed in Fig-
ure 1 and Figure 2, respectively, for a Jeffreys’ prior distribution. The weighted
marginal 7% (f|y) is multivariate Student with Y7 ,w; — 2 degrees of freedom,
whereas 7" (o2 |y) is inverse gamma. The main effect of the weights is that of shift-
ing the marginal posterior distributions over different regions of the parameter space,
so resulting in credible sets different from those one would have obtained according
to the misleading information driven by the presence of the outlier.

3.2 Poisson regression

The use of a set of weights and the replacement of the genuine likelihood function by
its weighted counterpart is not supposed to compromise the possibility to face more
complex problems in which it is custom to turn to MCMC algorithms. The weighted
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Fig. 2 Rats data. Marginal posterior density of 6> by WLEE—-weights (solid line) and of the proper
posterior density (dashed line).

likelihood can be employed for Bayesian inference in a Poisson generalized linear
model of the form

Y; ~ Pois(1;), logp;=x!B, B=(Bo,Br,-...Bs)", i=12,....n,

with a multivariate normal prior distribution 7(f3) with zero mean vector, uncorre-
lated components and large diagonal values, in order to use a diffuse prior. The latter
has been preferred with respect to an improper uniform prior for computational rea-
sons, in particular to allow the evaluation of the Laplace approximation in model
comparison through Bayes Factors. The weighted likelihood function is obtained
by using WLEE—-weights with a RAF based on the Generalized Kullback-Leibler
divergence.

A random walk Metropolis algorithm has been implemented to simulate from the
weighted posterior distribution in a very standard fashion. In particular, the proposal
distribution involved in the weighted MCMC algorithm is centered at the current
value of B and has a variance-covariance matrix that depends on the large sample
variance-covariance matrix of the weighted likelihood estimator 3W of . The statis-
tical environment R was used to perform all the computations. The weighted MCMC
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routines were implemented in R calling suitable C++ functions. An R-package is
currently under development and routines are available from the authors.

Suppose that we aim at comparing the reduced model mg indexed by Pgr =
(Bo, B1, B2), with the full model mp, indexed by B. To this end a weighted Bayes
Factor (WBF) is properly defined as

gy — R L"(xBr)m(Br)dpr
mRime s L (x|B)m(B)dB

(6)

where w(y;,x7) = ww (yi,x7: Bw, F;,) are evaluated only only under my.
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