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Abstract Statistical matching has the objective to estimate a joint distribution of
two r.v. (Y,Z) when two sample surveys on (X ,Y ) and (X ,Z) are available, X being
a set of common variables in the two surveys. The aim of this paper is to analyze
the uncertainty (due to the lack of joint sample information on (Y,Z)) in statistical
matching for ordered categorical variables. The notion of uncertainty is first intro-
duced, and a measure of uncertainty is then proposed. Moreover, the reduction of
uncertainty in the statistical model due to the introduction of logical constraints is
investigated and evaluated via simulation.
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1 Introduction

Let (X , Y, Z) be a three-dimensional random variable (r.v.), and let A and B be two
independent samples of nA and nB i.i.d. records from (X , Y, Z), respectively. Assume
that the marginal (bivariate) (X , Y ) is observed in A, and that the marginal (bivari-
ate) (X , Z) is independently observed in B. The main goal of statistical matching,
at a macro level, consists in estimating the joint distribution of (X , Y, Z). Such a
distribution is not identifiable due to the absence of joint information on Z and Y
given X , see [3]. The main consequence of the lack of identifiability is that some
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parameters of the model cannot be estimated on the basis of the available sample
information. For instance, in a parametric setting, instead of point estimates, one
can only reasonably construct sets of “possible estimates”, compatible with what
can be actually estimated. These sets provide a representation of uncertainty about
the model parameters. In this setting, the main task consists in constructing a co-
herent measure that can reasonably quantify the uncertainty about the (estimated)
model. In this paper, we provide a precise definition of uncertainty on the (esti-
mated) model, and construct a coherent measure that can reasonably quantify such
an uncertainty. We confine ourselves to the case of ordered categorical variables.
The case of discrete variables with nominal values is dealt with in [3].

2 Uncertainty in statistical matching for ordered categorical
variable

Assume that, given a discrete r.v. X with I categories, Y and Z are discrete r.v.s
too, with J and K categories, not necessarily ordered. With no loss of generality, the
symbols i = 1, . . . , I, j = 1, . . . ,J, and k = 1, . . . ,K, denote the categories taken by X ,
Y and Z, respectively. Let γ jk|i be the conditional probability Pr(Y = j, Z = k|X = i),
and denote by φ j|i = Pr(Y = j|X = i) and ψk|i = Pr(Z = k|X = i) the corresponding
marginals, respectively. For real numbers a, b, define further the two quantities:
U(a, b) = min(a, b), L(a, b) = max(0, a+b−1), then

L(φ j|i, ψk|i)≤ γ j,k|i ≤U(φ j|i, ψk|i). (1)

The interval (1) summarizes the pointwise uncertainty about the statistical model for
every triple (i, j,k). It is intuitive to take the length of such an interval as a pointwise
measure of uncertainty. Formally

∆
jk|i =U(φ j|i, ψk|i)−L(φ j|i, ψk|i) (2)

The larger ∆ jk|i the more uncertain the statistical model generating the data w.r.t.
(i, j,k). Conditionally on i, the pointwise uncertainty measures (2) can be summa-
rized as follows

∆
x=i =

J

∑
j=1

K

∑
k=1

{
U(φ j|i, ψk|i)−L(φ j|i, ψk|i)

}
φ j|iψk|i, (3)

representing the conditional uncertainty measure. Analogously, the overall uncer-
tainty measure is given by

∆ =
I

∑
i=1

∆
x=i

ξi (4)
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where ξi is the probability of the event (X = i). Sharper results are obtained
when the categories taken by (X , Y, Z) are ordered. For the sake of simplic-
ity, we use the customary order for natural numbers. In this case, define with
H jk|i = ∑

j
y=1 ∑

k
z=1 γyz|i, j = 1, . . . ,J, k = 1, . . . ,K, i = 1, . . . , I, Fj|i = ∑

j
y=1 φy|i, j =

1, . . . ,J, i = 1, . . . , I, Gk|i = ∑
k
z=1 ψz|i, k = 1, . . . ,K, i = 1, . . . , I, the cumulative d.f.’s

are respectively. Then, the inequalities

L(Fj|i, Gk|i)≤ H jk|i ≤U(Fj|i, Gk|i). (5)

hold true. It is easy to prove that inequalities (5) imply sharper inequalities for the
probabilities γ jk|i. In this case, the pointwise uncertainty measure (2) is

∆
jk|i =U(Fj|i, Gk|i)−L(Fj|i, Gk|i). (6)

and the conditional uncertainty measure (3) is

∆
x=i =

J

∑
j=1

K

∑
k=1

{
U(Fj|i,Gk|i)−L(Fj|i,Gk|i)

}
φ j|iψk|i. (7)

The overall uncertainty measure ∆ is the average of (7) with respect to the
probabilities ξis. In several real cases, uncertainty about the joint distribution of
Y and Z can be considerably reduced by introducing appropriate logical con-
straints among the values taken by Y and Z. Precisely, we consider constraints
acting as structural zeroes, i.e. constraints that make equal to 0 some of the joint
probabilities γ jk|i = Pr(Y = j,Z = k|X = i). Of course, this is equivalent to as-
sume that logical constraints “reduce” the support of the joint distribution of Y
and Z (given X), which is strictly smaller than the Cartesian product of the sup-
ports of Y and Z. To introduce the kind of constraints we will deal with, consider
the support of (Y, Z) given X , which is a subset (either proper or improper) of
{( j, k); j = 1, . . . , J; k = 1, . . . , K}. For each j ∈ {1, . . . , J}, define the two integers:
k+j = largest integer k such that γ jk|i > 0; k−j = smallest integer k such that γ jk|i > 0.
Of course, there exist integers j1, j2 such that k+j1 = K and k−j2 = 1. The support
of (Y, Z) (given X) is Y -regular if, for all j = 1, . . . , J: γ jk|i = 0 if and only if k >

k+j , or k < k−j . In this setting new extremal distributions H+
jk|i, H−jk|i obtained by

suitable algorithms can be found. Furthermore, the unconstrained bounds in (5)
will be reduced whenever the support of (Y, Z) given X is Y -regular. Z-regularity
can be defined in a similar way, leading to similar results. ∆ x=i

c and ∆c will be the
conditional and unconditional measures of uncertainty under these constraints.

3 Estimation of the measure(s) of uncertainty

An important feature of the measure of estimation introduced so far is that they can
be estimated on the basis of sample data. Let nx

A,i (nx
B,i) be the number of sample
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observations in sample A (B) such that X = i, and let nxy
A,i j (nxz

B,ik) be the number
of observations in sample A (B) such that X = i and Y = j (X = i and Z = k),
i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K. Let F̂j|i and Ĝk|i be the empirical cumulative
distribution functions (e.c.d.f.s) of Fj|i, Gk|i.

The conditional and unconditional measures of uncertainty can be estimated by

∆̂
x=i
c =

J

∑
j=1

K

∑
k=1

(
Ĥ+

jk|i− Ĥ−jk|i
)

φ̂ j|i ψ̂k|i, , ∆̂c =
I

∑
i=1

∆̂
x=i

ξ̂i

respectively. It can be proved that:

• The estimators of uncertainty measures are consistent:

∆̂
x=i
c

a.s.→ ∆
x=i
c as nA→ ∞,nB→ ∞, i = 1, . . . , I;

∆̂c
a.s.→ ∆c as nA→ ∞, nB→ ∞.

• The estimators of uncertainty measures are asymtpotically normal. Assume that
nA/(nA + nB)→ α as nA, nB go to infinity, with 0 < α < 1, and that Fj|is, Gk|is
satisfy some differentiability conditions. Then, both√

nx
A,in

x
B,i

nx
A,i +nx

B,i
(∆̂ x=i

c −∆
x=i
c ) and

√
nAnB

nA +nB
(∆̂c−∆c)

do have normal asymptotic distribution with mean zero and positive variance σ2
i

and σ2 respectively, as nA, nB tend to infinity.

The asymptotic variances σ2
i s, σ2 do have a complicate form, depending on the

“true” Fj|is, Gk|is . However, they can be consistently estimated by bootstrap. The
above results are useful to construct point and interval estimates of the uncertainty
measures ∆ x=i

c , ∆c. They are also useful to test the hypothesis that the class of bi-
variate d.f.s with upper bounds H+

jk|is and lower bounds H−jk|i is “narrow”, when
structural zeroes are considered.
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