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1 Introduction

In functional data analysis (e.g., [2]), the problem of data registration is encoun-
tered when the variability between subjects - represented as functions yi(x) with
i = 1, . . . ,n - is assumed to be related not only to the dependent variable y but also
to the independent one x; in a very wide sense, registering functional data means
identifying this second source of variability and removing it by means of subject-
dependent suitable transformations of the independent variable. Functional data reg-
istration is often a necessary step to achieve a successful functional data analysis
since it allows a correct matching across subjects. More technically, a registration
of a functional data set is considered any procedure that aims at making the n ob-
served functions yi as similar as possible by means of n suitable transformations of
the abscissas hi. These transformations are commonly named warping functions and
the variability of the functional data set imputable to them is usually named phase
variability; finally, the residual variability observed among the aligned functions is
named amplitude variability. In the recent literature, the spread use of continuous
alignment procedures in applications coexists with a very little number of theoret-
ical works trying to formalize the problem of curve registration (e.g., [1]). In this
work, we propose a possible mathematical framework where this problem can be
coherently set: we show indeed that the introduction, in a functional data analy-
sis, of a metric and of a group of warping functions, respect to which the metric
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is invariant, enables a sound and not ambiguous definition of phase and amplitude
variability. Indeed in this framework, we prove that the analysis of a continuously-
registered functional data set can be re-interpreted as the analysis of a set of suitable
equivalence classes associated to original functions and induced by the group of the
warping functions.

2 Functional Data Registration Revisited

To obtain this coherent formalization of the problem of registration some basic prop-
erties, of the set F which the functional data belong to, and of the set W of warping
functions, are demanded:

a) F = { f : Ω ⊆ Rp −→Ψ ⊆ Rq} is a metric space according to a metric d : F ×
F −→ R+

0 ,
b) W is a subgroup – with respect to ordinary composition ◦ – of the group of the

continuous automorphisms: Ω ⊆ Rp −→Ω ⊆ Rp;
c) ∀ f ∈ F and ∀h ∈W we have that f ◦h ∈ F ;
d) Given any couple of elements f1, f2 ∈ F and an element h ∈W , the distance

between f1 and f2 is invariant under the composition of f1 and f2 with h, i.e.:

d( f1, f2) = d( f1 ◦h, f2 ◦h) ; (1)

we will refer to this property as W-invariance of d.

Thanks to properties (a)-(d), it is possible to define a semi-metric dW : F×F −→R+
0

that is jointly determined by the metric d and the group W ([3]):

Theorem 1 (Definition of the semi-metric dW ).
Under properties (a)-(d), dW ( f1, f2) := minh1,h2∈W d( f1 ◦h1, f2 ◦h2) , when defined,
is a semi-metric.

Sufficient conditions for the existence of the minimum are reported in [3]. Like
any other semi-metric, dW induced a partition of the space F in to a quotient set
that we will indicate as F . The W -invariance of the original metric d provides a
bijective correspondence between the equivalence classes of the quotient set F and
the orbits of the action of the group W on the set F . Thus, we can define a metric
dF : F ×F −→ R+

0 on F that is consistent with the original metric d on F ([3]);
let [ f ] indicate the equivalence class of F which f belongs to:

Theorem 2 (Definition of the metric dF ).
Under properties (a)-(d), dF ([ f1], [ f2]) := dW ( f1, f2) , is a metric.

We are now going to formalize in this mathematical framework the problem of
the registration of a couple of functions f1 and f2.

Definition 1. Given f1 and f2 ∈ F and a minimizing couple h1 and h2 ∈W (i.e. h1
and h2 such that d( f1 ◦h1, f2 ◦h2) = dF ([ f1], [ f2])), f̃1 = f1 ◦h1 and f̃2 = f2 ◦h2 are
said mutually-registered representatives of [ f1] and [ f2].
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Note that, since given a couple of elements f1 and f2 ∈ F there is not a unique
minimizing couple h1 and h2, there is not a unique couple f̃1 and f̃2 of mutually-
registered representatives of [ f1] and [ f2]. It is worth mentioning two certain special
couples of mutually-registered representatives of [ f1] and [ f2]: the one correspond-
ing to h1 = 1 and the one corresponding to h2 = 1. In the former case f̃1 = f1 while
in the latter case f̃2 = f2.

Definition 2. Given a couple f1 and f2, and a couple of mutually-registered repre-
sentatives f̃1 and f̃2 such that f̃1 = f1 and h1 = 1, f̃2 is said a f1-registered repre-
sentative of [ f2] (or in less formal but more familiar terms f̃2 is said a registered
version of f2 with respect to f1). We will refer to it as f̃2→1 and to the corresponding
warping function as h2→1. The definition of f̃1→2 and h1→2 is analogous.

Moreover, since an f1-registered representative of [ f2] is an element ∈ [ f2] minimiz-
ing the distance with f1, we have that:

f̃2→1 = arg min
f∈[ f2]

d( f , f1) and f̃1→2 = arg min
f∈[ f1]

d( f , f2) ,

with d( f̃1→2, f2) = d( f1, f̃2→1) = dF ([ f1], [ f2]). According to this framework, reg-
istering a function f1 ∈ F with respect to a function f2 ∈ F - according to a metric
d and a class of warping functions W - simply means replacing f1 with f̃1→2.

The introduction of a quotient set F over F (dependent on the choices for d
and W ) is the key to a clear and not ambiguous definition of Phase Variability and
Amplitude Variability. We are quite sure to meet the heuristic sense of many authors,
by defining the phase variability as the one that can occur between functions ∈
F belonging to the same equivalence class, i.e. the variability within equivalence
classes (in this case, dF ([ f1], [ f2]) = 0). Coherently, the amplitude variability is the
variability between functions not belonging to the same equivalence class and not
imputable to phase variability, i.e. the variability between equivalence classes (in
this case we have dF ([ f1], [ f2]) = d( f1, f2)).

In the same framework, it is straightforward to define the registration of a
set { fi}i=1,2,...,n with respect to a target function f0. Indeed registering the set
{ fi}i=1,2,...,n with respect to f0 means replacing the set { fi}i=1,2,...,n with the set
{ f̃i→0}i=1,2,...,n (or simply { f̃i}i=1,2,...,n) whose distances to f0 are minimal over the
relevant equivalence classes:

{ fi}i=1,2,...,n 7−→ { f̃i = arg min
f∈[ fi]

d( f0, f )}i=1,2,...,n .

In other words, registering the set { fi}i=1,2,...,n with respect to f0 consists in finding
in [ f1], [ f2], . . . , [ fn], n functions that are the closest to f0 respectively.

Given the fact that 0 ≤ dF ([ f1], [ f2]) ≤ d( f1, f2), we can define an amplitude-
to-total variability ratio bounded between 0 and 1, useful in practical situations,
measuring to what extent phase and amplitude variability contribute to total vari-
ability:

α
2 =

∑
n
i=1 d2

F ([ fi], [ f0])

∑
n
i=1 d2( fi, f0)

;
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and then we can then simply characterize the two extreme situations as follows:

• presence of phase variability only, when α2 = 0;
• presence of amplitude variability only, when α2 = 1.

The two extreme situations can be equivalently characterized as follows:

• presence of phase variability only, when for i = 1,2, . . . ,n : f̃i ≡ f0;
• presence of amplitude variability only, when for i = 1,2, . . . ,n : f̃i ≡ fi.

Note that both the registration of a set of functions in absence of a target function
and the registration of a set of functions when d is a semi-metric can also be inserted
in this framework; because of the limited space, these issues will be not addressed
here. To this regard, please refer to [3].

3 Conclusions and Future Perspectives

On the whole, by introducing the semi-metric dW , we managed to formalize the
problem of registration by showing that performing an analysis of a functional data
set using a semi-metric dW is either equivalent to perform an analysis of suitable
equivalence classes using the metric dF (i.e., our theoretical abstraction) and equiv-
alent to perform an analysis of the registered functions using the original metric d
(i.e., the usual approach used in applications).

In the present paper we also propose an amplitude-to-total variability ratio α2

that is here used as a purely descriptive tool. It is of paramount interest to investi-
gate in the future the possibility of using it as an inferential tool for testing the ab-
sence/presence of phase variability. Identifying the distribution a suitable test statis-
tic derived from α2 under the null hypothesis of absence of phase variability will
require the introduction of a probabilistic model for both amplitude and phase vari-
ability and, probably, also an “anova-inspired” decomposition of total variability in
amplitude and phase variability.
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