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1 Introduction

In many actual fields of research, data are curves observed in a continuous domain.
The area in statistics that deals with such data is Functional Data Analysis. For this
type of data, many classical inferential tools becomes nearly useless, as they require
the number of sample units to be greater than the dimension of the space in which
inference has to be carried out. In this work, we propose a novel non parametric
hierarchical procedure based on nested permutation tests that enables inference of
functional data, when testing for differences between two populations. Moreover,
this new approach allows to investigate, in case of rejection of the null hypothesis,
the aspects that lead to the rejection, both in terms of phase and amplitude. In this
work we focus on periodic functional data, although the proposed framework is very
general, and could be applied to any functional data set represented by means of a
suitable basis (see [3] for details).

2 Hierarchical testing procedure

Let {yi,...,yn} be a collection of n = n, + n;, curves. Assume that the first n, curves
represent a random sample from a first population Y,, and the remaining ones a
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sample from a second population Y;. We aim at testing the null hypothesis Y, £ Y,

against the alternative Y, ;é Y, in both the uncoupled and the coupled scenario.

In this work, we focus on periodic functional data observed on a grid tq,...,#;
during a period T'. This type of data set can be represented in the frequency domain
by means of a truncated Fourier expansion:

J-1)/2 o
yi(t) = poi+ Y, Agicos <Tkl+¢ki> (1
k=1

Thus, we can represent the ith unit by means of the (J — 1)/2 coefficients of phase
¢y and of the (J — 1) /2 coefficients of amplitude A;; associated with the first (J —
1)/2 frequencies.! Coherently, for the ”0th” frequency, we can define the phase and
amplitude coefficients as Ay; = |Uo;| and ¢o; = w[1 — sign(uo;)]/2.

In order to provide tests on differences between the two populations, we propose
a hierarchical combination of the p = J + 1 univariate permutation tests associated
to the parameters of the Fourier expansion (1), with single combinations being based
on NPC tests [2]. The test is defined by a family of transformations of the data set
which preserves the likelihood under Hy, suitable test statistics for the univariate
tests, and a suitable hierarchy of combination functions. The family of transforma-
tions of the original data set depends on the type of test we want to perform:

e in the uncoupled case the family of transformations is composed by any permu-
tation over the sample units of the observed values. So na'!',!lh, different rearrange-
ments of the data set are obtained.

e in the coupled case the family of transformations in composed by within-couple
permutations of the observed values. So, 2"« = 2" different rearrangements of
the data set are obtained.”

The univariate test statistic used for each parameter at frequency k depends on the
variable we intend to test and on the type of test. In particular:

e for the kth amplitud ®) 0 4 4 *) ., 9
plitude test Hamp (l'e" Hoamp : Aktl - Akb Vs Hlamp : Aka # Akb),

we use in the uncoupled case, the absolute value of the logarithm ratio between

na 4% \1/na
log <( (?i:'AZZ )U%) ‘ In the coupled
ki

i=ng+1

case we use the absolute value of the logarithm of the sample mean of ratio

geometric sample means: Ty, (A;) =

* 1 / Na
between coupled data: Ty, (Af) = |log (H”" Aki") :

i=1 Ay,
e for the kth phase test H](j;l) (i.e., Hé];)l : Ok, 4 Or, Vs Hl(k,)l D P, ;é O, ), we use
the absolute value of the geodesic ]distance between the two geodesic sam-
ple means of the phases: T,,(¢9}) = arccos(r; ,r; ), where ry ,r; denotes the

! Here, we suppose the number of grid points J to be odd. In the general case, we can only calculate
J =7 —1 coefficients.

2 In the coupled scenario the number of sample units of the two groups of course coincide, thus we
have necessarily n, = n,.
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unit vectors associated to the two geodesic sample means. In the coupled case

we use the geodesic sample mean of geodesic distances between coupled data:

Tph(¢,t) = Mlgeo [dgeo(q,tia,q,tib)}, where qltiavqltih denotes the unit vectors of di-

rection ¢;; ¢;;l.b.

The results of univariate tests H,Efq),, and H [(7];,) have to be corrected, taking into ac-
count multiplicity, in order to control the global error. For this purpose, we could use
the closed testing procedure described in [1]. The idea is to test at the same o level
each marginal hypothesis and multivariate intersection of them, and to reject any hy-

pothesis Ha(lf,,)p (or H (],?) when the test of every intersection containing Hf,,kyzp (H ;’2)
is statistically significant at level . This procedure provides a strong control of
the Family-Wise Error (FWE), although the actual number of tests to be performed
is 0'(2P), which grows exponentially with the dimension of the sample space. By
consequence, this procedure becomes unfeasible in the framework of functional or
high-dimensional data.

Thus, we propose a variation of the described procedure that focuses only on
suitable hypothesis intersections. In particular, we chose to combine amplitude and
phase results separately, and we focus our attention only on adjacent hypothesis

intersections, i.e., only intersections of the type {HLE,Q,, ﬂHLS,%” n... ﬂH,ﬁf;,r,h) }, or

{H aH 0BG, with j,j+h € {0,...,(J — 1)/2}, obtained in a hi-
erarchical way. In fact, due to the intrinsic regularity of functional data, we expect
false hypotheses not to be spread at isolated points along the frequency domain but
aggregated in intervals of frequencies. We construct two types of trees, with the
structures shown on Figure 1. In the first case (Figure 1.a) we only consider 2p

intersections, whereas in the second case (Figure 1.b) the number of intersections
is w. The number of tests to be performed in the two cases is thus & (p) and
O(p?), respectively, making them useful for dealing with functional data. With the
procedure we proposed, we only provide a partial control of the FWE, which is in-
termediate between weak control (i.e., control of the significance level of the global
test) and strong control (i.e., a control of significance level of all multivariate tests
constituted by hypothesis subsets). By means of MC simulations - not reported here
for brevity - we show that, in scenarios with aggregated false hypotheses, the power
of the hierarchical testing procedure is greater than the one obtained through the
complete closed testing procedure, supporting the heuristic idea that the hierarchical
testing procedure is able, in this framework, to jointly reduce the computational ef-
fort while improving the statistical power. A sound theoretical study of this property
characterizing the hierarchical testing procedure is currently under investigation.

Fig. 1 Trees of combined
adjacent hypotheses with the
two proposed strategies of
hierarchical combination, in
the example p = 4

(a) First combining tree (b) Second combining tree
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Fig. 2 NASA daily temperatures data, amplitude and phase tests results using the first tree

3 Application to NASA daily temperature data

We present an application of the procedure on a case study. Data are daily temper-
atures in Milan and Paris registered from July 1983 to June 2005 and stored in the
database NASA Earth Surface Meteorology for Solar Energy. In the application re-
ported, we identified the 22 years as sample units and the 365 records available for
each year as 365 point-wise evaluations of the functional data. We tested for differ-
ences between Milan (black dots) and Paris (red dots) temperature profiles in the
coupled scenario. Data are displayed on the left panel of Figure 2.

We perform phase and amplitude tests through the hierarchical testing procedure
proposed in Section 2, using the Fisher combination function and the first-tree ag-
gregation strategy. In the central and right panels of Figure 2 we represent the result
of each test included in the hierarchical procedure (i.e., the p-value dendrogram).
In particular, the horizontal axis is associated to frequencies and the vertical one to
levels of combination. Colors represent the p-values of each corresponding test. Fre-
quencies to be rejected are those who produce a significant test for all investigated
intersections, i.e., frequencies associated to a dark blue vertical line on the graph. In
this case, significant phase differences are detected for the sinusoids of period one-
year and half-year: these differences are related to a longer Spring and a shorter Fall
in Paris with respect to Milan. Significant amplitude differences are instead detected
for the constant term and for the sinusoid of period one-year: these differences are
related to an average colder weather in Milan, due to colder Winters. Interestingly,
at higher frequencies significant differences are found in terms of amplitude but not
of phase, showing a much higher short-term variability of the daily temperature in
Paris.
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