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Abstract We describe a novel Functional Data Analysis method for smoothing spa-
tially distributed data. We address the case where spatial data occur on a non-planar
bi-dimensional domain. In particular, we are interested in surface domains embed-
ded in a 3D space. Our approach, conformally maps the original 3D domain to a
region of the plane. Then existing spatial smoothing techniques are suitably mod-
ified to account for the domain deformation described by the conformal map. The
application driving the proposed approach is the smoothing of hemodynamic data,
such as wall shear stress or blood pressure, on the wall of a carotid artery.
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1 Introduction

In this work, we are interested in smoothing spatial data that occur over non-planar
domains. Unfortunately, only few methods are available to deal with this type of data
structure. One such model is presented in [1] where eigenfunctions of the Laplace-
Beltrami operator of the surface domain are used to construct a heat kernel smooth-
ing method. Here, we adopt a Functional Data Analysis approach, and propose a
regression method that efficiently handles data over non-planar domains. The key
idea is to flatten the original surface domain by means of a conformal map; the im-
portant property of a conformal map is that it preserves the angles and shapes of the
original surface domain in the planar domain. On the planar domain, it is possible
to use the method for spatial smoothing proposed in [6] and [7], suitably modifying
this method to account for the deformation of the domain.
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Fig. 1 Wall shear stress modulus at the systolic peak on real inner carotid artery geometry affected by aneurysm (data
of the AneuRisk project, http://ecm2.mathcs.emory.edu/aneurisk).

2 Data and model

Consider a set of n data locations {xi = (xi,yi,zi); i = 1 . . . ,n} that lie on a regular
surface Σ embedded in a R3. Let wi be the value of a real valued random variable of
interest observed at the point xi. The model we want to consider is

wi = f (xi)+ εi i = 1, . . . ,n (1)

where εi, i = 1, . . . ,n are observational errors and f is the function we aim to es-
timate. For example, consider the shear stress generated by blood-flow on the wall
of an internal carotid artery affected by an aneurysm, as illustrated in Figure 1 (for
a detailed description of the data and the applied problem see [5]; the data are part
of the AneuRisk project). In this example, the variable of interest is the wall shear
stress observed over the non-planar wall of the carotid artery. These types of data
structures occur in a number of different applications, not only in the medical field
but, e.g., also in environmental and geostatistical studies.

In the standard case of functions over planar bi-dimensional domains [6] and
[7] propose to estimate the function f by minimizing a penalized sum of squared
error functional. In particular, the penalty term is proportional to the integral, over a
planar domain of interest, of the squared Laplacian of the function. The Laplacian
locally measures the curvature of the function and hence this choice for the penalty
yields an estimate of f that approximates the observed data without being bumpy.
By analogy, in [3] we propose to estimate f in (1) by minimizing the following
penalized sum of squared error functional

Jλ ( f (x)) =
n

∑
i=1

(wi− f (xi))
2 +λ

∫
Σ

(∆Σ f (x))2 dx, (2)

where ∆Σ is the Laplace-Beltrami operator for functions defined over the surface Σ .
The Laplace-Beltrami operator is indeed the generalization of the common Lapla-
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(a) (b) (c) (d)
Fig. 2 (a) Test function; the surface domain is approximated by a 3D triangular mesh. (b) The test function with
simulated noise added at each data point. (c) Estimate obtained with the proposed method. (d) The planar triangulated
domain, conformally equivalent to the surface domain shown in left panel.

cian: it can be used to operate on functions defined on surfaces in Euclidean spaces
(see, e.g., [2]).

To minimize the functional in (2) by exploiting the planar techniques in [6] and
[7], we propose reducing (2) to a problem over a planar domain. To do this, we
flatten Σ by means of a conformal map X . In particular, we define X as the map

X :Ω → Σ

u = (u,v) 7→ x = (x,y,z)
(3)

where Ω is an open, convex and bounded set in R2. Denote by Xu(u) and Xv(u)
the column vectors of first order partial derivatives of X with respect to u and v and
define the metric tensor as the following symmetric positive definite matrix

G(u) :=
(
‖Xu‖2 〈Xu,Xv〉
〈Xv,Xu〉 ‖Xv‖2

)
(u) =

(
g11 g12
g21 g22

)
(u)

where g12 = g21, 〈·, ·〉 denotes the Euclidean scalar product of two vectors and
the corresponding norm is denoted ‖ · ‖. Set W (u) :=

√
det(G(u)), and denote by

G−1(u) = {gi j(u)}i, j=1,2 the inverse of G(u). Using this notation, for a function
f ◦X ∈ C 2(Ω), the Laplace-Beltrami operator of the surface Σ can be expressed as

∆Σ f (x) =
1

W (u)

2

∑
i, j=1

∂i(gi j(u)(W (u)∂ j f (X(u))).

where u = X−1(x). In [3], we show that (2) can be equivalently expressed as the
following problem over the planar domain Ω :

Jλ ( f (X(u))) (4)

=
n

∑
i=1

(wi− f (X(ui)))
2 +λ

∫
Ω

[
1

W (u)

2

∑
i, j=1

∂i(gi j(u)W (u)∂ j f (X(u))

]2

W (u)du

where X(ui) = xi. This problem turns out to be a modification of the estimation
problem solved in [6] and [7].
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From a computational view point, both the calculation of the conformal flatten-
ing map in (3) and the solution to problem (4) are carried out resorting to a Finite
Element approach, in particular non-planar and planar finite elements respectively.
Finite elements provide local basis for piecewise polynomial surfaces over a trian-
gulation of the domain. To compute (3) we use the method described in [4]. Figure
2 shows the flattening of a test surface domain using non-planar finite elements;
panel (a) shows the starting non-planar domain approximated by a fine 3D triangular
mesh, and panel (d) displays the conformally equivalent planar triangulated domain.
The problem is thus ready for implementation via the estimation method in [6] and
[7] based on planar finite elements, that has been suitably modified to account for
the deformation of the domain by the conformal map. Also illustrated in Figure 2 is
a simulation on the non-planar domain. The function f (x,y,z) = sin(2πz)+ xy+ 1
where x,y,z are restricted to non-planar domain is used as a test function (shown
as a colormap on the non-planar domain in panel (a)). Noisy data are generated by
evaluating the test function at each vertex of 3D mesh and then adding independent
normal errors with mean zero and standard deviation 0.25. Panel (b) shows the noisy
data and panel (c) shows the estimate obtained with the proposed method, setting
λ = 0.0014. The proposed method does a good job of estimating the test function
thus demonstrating the future promise of the proposed method for smoothing spatial
data over non-planar domains.
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2. Dierkes, U., Hildebrant, S., Küster, A., and Wohlrab, O. (1992), “Minimal Surfaces (I)”,
Springer.

3. Ettinger, B.D., Perotto, S., Sangalli, L.M. (2012), “Spatial smoothing over non-planar do-
mains,” in preparation.

4. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R. (2000), “ Nondistorting flattening maps
and the 3-D visualization of colon CT images”, IEEE Trans. Med. Imag., 19, 665-670.

5. Passerini, T., Sangalli, L.M., Vantini, S., Piccinelli, M., Bacigaluppi, S., Antiga, L., Boccardi,
E., Secchi, P., and Veneziani, V. (2012), “An Integrated Statistical Investigation of Internal
Carotid Arteries of Patients affected by Cerebral Aneurysms,” Cardiovascular Engineering
and Technology, doi: 10.1007/s13239-011-0079-x.

6. Ramsay, T. (2002), “Spline Smoothing over Difficult Regions,” J. R. Stat. Soc. Ser. B Stat.
Methodol., 64, 307-319.

7. Sangalli, L.M., Ramsay, J.O., and Ramsay, T.O. (2012), “Spatial Spline Regression Models,”
Tech. rep. N. 08/2012, MOX, Dipartimento di Matematica F.Brioschi, Politecnico di Milano,
available at http://mox.polimi.it/it/progetti/pubblicazioni. Submitted


