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Abstract The main objective of this paper is to propose a novel approach for model
comparisons when ROC curves show one or more intersections. We investigate in a
theoretical framework the relationship between ROC orderings and stochastic dom-
inance, and we propose alternative indicators for performance evaluation.
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1 Introduction

The receiver operating characteristic (ROC) curve describes the performance of a
classification or diagnostic rule, while the area under this curve (AUC) is a common
measure for the evaluation of discriminative power; see e.g. [3]. When ROC curves
cross each other, the AUC measure can lead to biased results and we are not able
to select the best model; see e.g. [2]. Common practise is to compare crossing ROC
curves by restricting the performance evaluation to proper subregions of scores (see
e.g. [7]). In our opinion, however, this issue should be more adequately handled in
the statistical literature.

The main objective of this paper is, therefore, to propose a novel approach for
model comparisons, when ROC curves show intersections. Referring to the litera-
ture on stochastic dominance, we provide a novel method for checking for unani-
mous rankings when the ROC curve dominance fails.
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2 ROC curve, AUC and Gini index

Consider a classification tool that gives a real-valued score to classify items into two
categories: good or bad. Let the random variable X with c.d.f. F represent the score
and x = (x1,x2, ...,xn) be a score profile from X with mean µ(x) and variance σ2(x).
Let X = {x : µ(x) = µ} be the set of n-dimensional score profiles with mean µ .

Suppose that for a prespecified cut-off c, item i is labeled as bad if xi ≤ c and
as good otherwise. The true positive rate, or sensitivity, is FB(c) = Pr(X ≤ c|Bad),
while the false positive rate, or (1 - specificity), is FG(c) = Pr(X ≤ c|Good).1

The ROC curve is obtained representing, for any fixed cut-off value, a point in
the cartesian plane having as x-value the false positive rate and as y-value the true
positive rate. The best curve is the one that is leftmost, the ideal one coinciding with
the y-axis. Then the ROC curve is defined as a plot of {(u,ROCX (u)),u ∈ (0,1)},
where ROCX (u) = FB(F−1

G (u)).
For sake of model comparisons, performance indicators based on the ROC curve

have been proposed, such as the AUC, which is defined as the integrated sensitivity
over all specificity ranges: AUC =

∫ +∞

−∞
FB(s)dFG(s).

Since the ROC curve measures the inequality between the good and the bad score
distributions, it seems reasonable to see a connection between the ROC curve and
the Lorenz curve; see [3]. Twice the area between the Lorenz curve and the straight
line at 45 degree corresponds to the well-known Gini concentration index. This leads
to an interesting interpretation of the AUC measure in terms of the Gini coefficient
G; more precisely: G = 2 ·AUC−1; see [4].

3 ROC ordering and stochastic dominance

If the ROC curves do not cross each other, there is an unambiguous comparison
of two diagnostic tests in terms of discriminative power and the AUC index pro-
vides consistent results. The ordering induced by the ROC curves is equivalent
to the first stochastic dominance: ROCX (u)≤ ROCY (u) if and only if FB(F−1

G (u))≤
HB(H−1

G (u)) ∀u ∈ (0,1), where X and Y represent the score of two different classi-
fiers, with c.d.f. F and H, respectively. In symbols, we write that X ≥FSD Y .

In comparing two score distributions, it is of interest to investigate the transfor-
mations by which one distribution is obtained from the other. More specifically, Y
has more discriminative power than X , if Y is obtained from X by some kind of
performance-increasing transfers.

We say that X ≥FSD Y if and only if Y is obtained from X by a first order perfor-
mance increasing (FOPI) transfer, according to which the cumulative proportion of
bad individuals, increasingly ordered according to their scores, is always higher in
Y than in X . In the empirical case, (X ,Y ) is a FOPI transfer if p j ≤ q j ∀ j = 1, ...,m,

1 The sensitivity is the probability of correctly classifying a bad item, while the specificity is the
probability of correctly classifying a good item.
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where (p1, ..., pm) and (q1, ...,qm) are the true positive rates for X and Y in corre-
spondence to each of the m given cut-offs.

Let us denote discriminative power index any function I : X → R. The function
I satisfies the FOPI principle of transfers if I(X)≤ I(Y ) whenever (X ,Y ) is a FOPI
transfer. Obviously, AUC satisfies this principle.

If two ROC curves intersect each other, the first order stochastic dominance fails
and it is not possible to employ the AUC index. Thus we move to the second or-
der stochastic dominance (SSD), according to which X dominates Y (in symbols,
X ≥SSD Y ) if

∫ z
0 ROCX (u)du≤

∫ z
0 ROCY (u)du ∀z ∈ [0,1].

The SSD can be obtained from a second order performance increasing (SOPI)
transfer, according to which Y assigns to bad individuals the smallest scores with
higher frequency and the highest scores with smaller frequency than X .2

Although multiple crossings of ROC curves can occur, in practise they are less
common than single intersections. Here we focus on the scenario of one crossing.

We say that the ROC curve of distribution X intersects that of Y once from below
if and only if there exists u∗ ∈ (0,1) such that ROCX (u)≤ ROCY (u) ∀u≤ u∗ and <
for someu≤ u∗, and ROCX (u)≥ ROCY (u) ∀u≥ u∗ and > for someu≥ u∗.

Proposition 1. If ROCX (u) intersects once from below ROCY (u) and if
∫ u∗

0 (ROCY (u)−
ROCX (u))du≥

∫ 1
u∗(ROCX (u)−ROCY (u))du, then X ≥SSD Y .

Since the AUC index may contradict with the criterion of the SSD, alterna-
tive measures are required. From [1], we have that the class of indices I(X) =∫

ψ(x)dFB(x), with ψ nondecreasing and concave, is consistent with the SSD. This
class of measures provides, therefore, a coherent alternative to the AUC.

If also the SSD is violated, we refer to the third order stochastic dominance,
according to which X ≥T SD Y if

∫ z
0 (

∫ x
0 ROCX (u)du)dx ≤

∫ z
0 (

∫ x
0 ROCY (u)du)dx

∀z ∈ [0,1].
X ≥T SD Y if and only if Y is obtained from X through a third order performance

increasing (TOPI) transfer, according to which in Y a SOPI transfer happens at a
higher level of specificity than in X . In [7], indeed, it is stated that ”if the curves of
the two scorecards overlap then one scorecard is better in one region of scores an
the other in another region of scores. (...) Normally one is anxious to accept a large
proportion of the goods and so the cut-off scores would tend to be in the area nearer
the left of the graph.” (page 116).

A discriminative power index I is consistent with the TOPI transfer if and only if
I(Y )≥ I(X) with (X ,Y ) being a TOPI transfer. Note that the AUC does not satisfy
this property.

Proposition 2. If ROCX (u) intersects once from below ROCY (u) and if
∫ u∗

0 (ROCY (u)−
ROCX (u))du ≤

∫ 1
u∗(ROCX (u)−ROCY (u))du, then I(Y ) > I(X) for all TOPI con-

sistent discriminative power indices I(·) if and only if σ2(y)≥ σ2(x).

Proposition 2 states that we can still compare two crossing ROC curves, in case
of violation of SSD, provided that (i) the score means are equal and (ii) the ROC

2 In the income distribution literature, this transfer is called regressive transfer.
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curve of the score distribution with lower variance intersects once from below the
other curve; for the proof of this result we refer to Theorem 3 in [6]. Our result does
not resolve all the ambiguous rankings associated with single crossing ROC curves;
it will, however, assist a large number of pairwise comparisons for which the AUC
index is not applicable.

Following [1], we propose then a class of indices that are consistent with the
TSD, and thus can be used when the ROC curves intersect each other. More pre-
cisely, the class of indicators I(X) =

∫
ψ(x)dFB(x), where the function ψ is nonde-

creasing and concave with a non-negative third derivative, provides an alternative to
the AUC measure that is coherent with the TOPI principle of transfers.

4 Conclusions

We have provided a novel method for checking for unanimous classifier perfor-
mance rankings when the ROC curve dominance fails. Our method has the main
advantage of establishing whether one distribution can be ranked superior to an-
other according to discriminative power, by looking at the entire score distribution.

Furthermore, we have tested our theoretical proposal on a real data set provided
by a rating agency. The application (here not shown for sake of space, but available
from the authors upon request) shows that the indices proposed in Section 3 provide
coherent results in terms of model selection when ROC curves cross.

Next steps of further research will be focused on (i) applying the inverse stochas-
tic dominance theory within the ROC curve framework (see e.g. [5]), and (ii) ex-
tending the class of discriminative power indices on the basis of the results provided
in [1].
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