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Abstract Small area estimation based on M-quantile regression has recently been 

introduced by [2] and it has proved to provide a valid alternative to traditional methods. 

Thus far, this method has only been applied to cross-sectional data. However, it is well 

known that the use of panel data may provide significant gains in terms of efficiency of 

the estimators. This paper explores possible extensions of M-quantile based small area 

estimators to the panel data context. An application of the methodology to the 

Kauffman Firm Survey data is envisaged. 

1 Introduction 

In recent years, there has been an increasing demand by policy makers for estimates of 

population characteristics at regional level. Unfortunately, limited founding resources 

for the design of sample surveys often lead to small sample sizes within these domains. 

As a consequence, direct estimators (which use only data from sample units in the 

domain) cannot be applied since they yield estimates with unacceptable standard errors. 

These problems are typically overcome by the use of small area techniques. This is an 

approach based on models that borrow strength in making an estimate for one small 

area from sample survey data collected in other small areas and/or at other time periods. 

The most popular class of models for small area estimation is based on random effects 

models, which include random area effects to account for between area variation.  

In this paper, we focus on models that borrow strength across both small areas and 

times. These types of estimators are generally based on panel data, that is, sample 

surveys repeated in time over the same units. Panel data combine the individual 

dimension with the time dimension, thereby augmenting the information of the data 

with respect to a cross-section approach. For this reason panel data analysis presents 

many benefits. It allows to control for individual (and time) unobserved heterogeneity, 
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and hence allow to isolate the longitudinal variability of the investigated phenomena 

from the variability due to the different characteristics of the responding units. 

Moreover, panel data are more informative since there is more variability and the 

estimates are therefore more efficient.  

In the small area context, it is well known that for such repeated surveys 

considerable gains in efficiency can be achieved by borrowing strength across both 

small areas and times. Thus far, the use of longitudinal data for purposes of small area 

estimation is concentrated mostly on the area level models [3]. The possible reason for 

this is that in many countries, and especially in the United States, the infrastructure of 

the official statistics does not support longitudinal data sets at individual level. On the 

other hand, research on small area estimation from unit level panel data is clearly 

needed, because aggregating individual level data to adapt for area level models may 

cause unnecessary loss of information. At the unit level, an appropriate model for panel 

data must take the covariance of the repeated observations from the same unit into 

account. One simple model that can be adapted to this purpose is the two-fold nested 

error regression model proposed by [7]. The small area means then are estimated by the 

Empirical Best Linear Unbiased Predictor (EPLUP). Refer to [4] for more details. 

Recently, an alternative unit-level approach to small area estimation based on M-

quantile regression has been proposed by [2]. The advantages of M-quantile based 

small area estimators with respect to traditional random effects models are that they do 

not depend on strong distributional assumptions and that they are outlier robust. The 

initial estimator proposed in [2] has subsequently been extended in various ways [6,8]. 

However, to the best of out knowledge, up to now this technique has only been applied 

to cross-sectional data. The gains in efficiency that can be obtained using panel data 

have not been explored yet. The aim of this research is a theoretical development of M-

quantile small area estimators to the panel data context. We also investigate the 

possibility of applying the methodology to the Kauffman Firm Survey data. 

2 M-quantile small area estimation for cross-sectional data 

Suppose that a population U  of size N  is divided into non-overlapping domains of 

size jN , 1, ,j d= … . Assume that a sample s  is available and denote jn  the sample 

size in area j  and js  ( jr ) the sampled (non-sampled) population units in the area. Let 

ijy  denote the value of the variable of interest for unit i  belonging to the small area j  

( 1, ,j d= … , 1, , ji n= … ). Assume that the values of y  are available for each unit of 

the sample and that a vector of auxiliary variables ijx  is available for each unit of the 

population. We are interested in predicting small area means for the target variable for 

each small area: 
1

j j
j j iji s r

m N y−

∈ ∪
= ∑  ( 1, ,j d= … ). 

A recently introduced approach to small area estimation is based on M-quantile 

regression. M-quantile regression [1] provides a ‘quantile-like’ generalization of 

regression based on influence functions. For fixed q  ( 0 1q< < ), the linear M-

quantile model of order q  (denoted hereafter ( );qQ x ψ ) of the conditional 
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distribution of y  given x  is given by ( ) ( );
T

qQ x x qψψ β= , where ψ  refers to an 

appropriately chosen influence function (such as Huber Proposal 2). An estimate 

( )ˆ qψβ  of ( )qψβ  is obtained by solving the following equations (in β ) 

( )
1 1

0,
jnd

T

q ij ij

j i

y xψ β
= =

− =∑∑  

where ( ) ( ) ( ) ( ) ( ){ }1 0 1 0q r s r qI r q I rψ ψ −= > + − ≤  and s  is a robust estimate of 

scale such as the mean absolute deviation. 

The idea underlying M-quantile based small area estimation is the following. The 

conditional variability across the population can be characterized by the so-called M-

quantile coefficients of the population units. For unit i  in small area j  with values 

( ),ij ijx y , this coefficient is defined as the value ijq  such that ( );
ijq ij ijQ x yψ =  -- 

that is, ijq is the order of the M-quantile passing through the point ( ),ij ijx y . If a 

hierarchical structure does explain part of the variability in the population, then it is 

expected that units belonging to the same area have similar coefficients. It is therefore 

natural to characterize each small area j  by means of an indicator jθ  defined here as 

the mean of the population M-quantile coefficients belonging to that area 
1

j j
j j iji s r

N qθ −

∈ ∪
= ∑ . This coefficient identifies an M-quantile regression plane 

( );
j

Q xθ ψ  characteristic of that area, which  allows the prediction of unobserved data 

in the area. Such predicted values are then used to construct estimates of jm . When 

( )qψβ  is a sufficiently smooth function of q , the following bias-adjusted estimator 

has been proposed [8]: 

( ) ( ){ }1 ˆ ˆ ˆ ˆˆ .
j j j

j jT T

j j ij ij j ij ij j

i s i r i sj

N n
m N y x y x

n
ψ ψβ θ β θ−

∈ ∈ ∈

 −
= + + − 

  
∑ ∑ ∑  

Refer to [8,6] for other possible estimators, together with the corresponding MSE 

estimators. 

3 M-quantile small area estimation for panel data 

Let now ijty  denote the value of the variable of interest for unit i  belonging to the 

small area j  at time t  ( 1, ,j d= … , 1, ,t T= … , 1, , jti n= … ). Denote ijtx  the 

corresponding covariates known at the population level. We are now interested in 

predicting small area means for the target variable at the final time T : 
1

i i
jT j ijTi s r

m N y
−

∈ ∪
= ∑  ( 1, ,j d= … ). 

In order to extend the M-quantile based small area technique to panel data, the first 

step is to extend M-quantile regression to panel data. For a given q , the simplest M-
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quantile panel data model is ( ) ( ); ;
T

qtQ x x q tψψ β=  ( 1, ,t T= … ). The natural 

estimator for ( );q tψβ  is then the pooled M-quantile regression estimator ( )ˆ ;q tψβ , 

which solves 

( )
1 1 1

0.
jtnd T

T

q ijt ijt

j t i

y xψ β
= = =

− =∑∑∑  

This kind of regression allows to look at the dynamic relationship and is expected to 

increase the efficiency of estimators. However, it does not allow us to control for 

unobserved cross-section heterogeneity. An improvement of the β  estimates is 

expected by allowing explicitly for unobserved effects. For a given q , a natural 

specification that incorporates strict exogeneity is ( ) ( ), ; ;
T

qtQ x c x q t cψψ β= + , 

where c  denotes an unobserved, time-constant variable called unobserved effect. 

Unfortunately, unlike in the case of estimating effects on the conditional mean, it is not 

possible to proceed without further assumptions. The same problem is faced by quantile 

regression for panel data and it has been treated recently. Refer to [9] and references 

therein. 

In the present research, we intend to give conditions allowing the estimation of the 

M-quantile model. Once estimators are well defined we extend the M-quantile based 

small area estimators to panel data. Of course, also the problem of MSE estimation has 

to be addressed, taking into account the covariance of the repeated observations from 

the same unit. Next we assess possibilities of application of the methodology to the 

Kauffman Firm Survey data sponsored by the Ewing Marion Kauffman Foundation. 

The KFS is the largest longitudinal survey of new businesses in the world. It consists of 

a cohort of 4,928 firms that were founded in 2004 in the United States and tracked over 

the years [5]. The analysis will allow us to perform comparative economic analysis of 

different areas in the U.S. related to businesses in their early years of operation. 
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