Simulation of random rotation matrices
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Abstract Directional distributions are playing an increasing role as building blocks
in sophisticated geometric statistical models. Inference from such models is often
carried out by MCMC. Hence it is important to have efficient methods of simulation
for the underlying directional distributions. In this paper we survey some existing
methods and describe a method for the matrix Fisher distribution for 3 x 3 rotation
matrices which is based on a new acceptance-rejection simulation method for the
Bingham distribution.
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1 Introduction

Directional data analysis is concerned with statistical analysis on various non-
Euclidean manifolds, starting with circle and the sphere, and extending to related
manifolds (Mardia and Jupp, 2000). Directional distributions can used as build-
ing blocks in more sophisticated statistical models which are studied using MCMC
methods. For example, Green and Mardia (2006) used the matrix Fisher distribution
in a Bayesian model to align two configurations of points in R? in an unlabelled
version of shape analysis, and they applied the model to a problem of protein align-
ment in bioinformatics. Hence there is a need to develop simulation methods for
directional distributions which are efficient over a wide range of concentration pa-
rameters. In this paper we focus on the simulation of the matrix Fisher distribution
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Table 1 Some common distributions on directional spaces

Space Notation Distributions

circle N von Mises, wrapped Cauchy

sphere Sp Fisher (p = 2) and von-Mises-Fisher (p > 1),
Fisher-Bingham

real projective space RP, Bingham, angular central Gaussian

special orthogonal group SO(q) matrix Fisher

on the space of 3 x 3 rotations using a new acceptance-rejection method to simulate
the Bingham distribution.

2 Directional distributions

Table 1 gives some of the common spaces associated with directional data analysis,
together with the main distributions.

The sphere S, = {x € RP*!: xTx = 1} represents the space of “directions” in
RP*!. Real projective space consists of the “axes” or “unsigned directions” 4-x. In
some sense this space is half of a sphere; it can also be represented as the space of
rank 1 projection matrices,

RP, = {P e RPTDX+D) . p— pl' p2— p tr(P)=1}. (1)

A rank one projection matrix can be written as P = xx’ where x is a unit vector. The
special orthogonal group of g X ¢ rotation matrices is defined by

SO(q) = {Re€ R : detR=1, R"R=1,},

On each of these spaces there is a unique uniform distribution which is invariant
under rotations. Further each of these spaces is naturally embedded in a Euclidean
space. A natural “linear-exponential” family of distributions can be generated by
letting the density (with respect to the uniform measure) be proportional to the ex-
ponential of a linear function of the Euclidean variables. This construction generates
the first named distribution in each of the four rows of the table above. It should be
noted that the Bingham distribution, whose log density is linear in P = xx in (1),
can also be viewed as a distribution on the sphere whose log density is quadratic in
X.

3 The matrix Fisher distribution

The linear-exponential family on SO(p) is known as the matrix Fisher distribution,
with density
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f(X)=crexp{tr (FTX)}, X € SO0(p),

with respect to the underlying invariant Haar measure. This density was introduced
by Khatri and Mardia (1977); it is unimodal about a fixed rotation matrix determined
by the p X p parameter matrix F'.

Now specialize to the case ¢ = 3. A matrix in X € SO(3) can be written in the
form X = H3(¢)H13(0)H2(y), where for 1 <i < j <3, H;j(6) denotes a 3 x
3 matrix which looks like an identity matrix except for values cos 0 in locations
(i,i) and (j,j), and values sin@ and —sin@ in locations (i, j) and (j,i). Thus X
is constructed as a product of three two-dimensional rotations about each of the
coordinate axes in turn. The angles ¢, 0,y are known as Euler angles. They lie in
ranges, 0 < ¢,y < 27w and —7/2 < 6 < 7/2. In these coordinates the underlying
Haar measure can be represented as

[dX] = cos OdOd¢dy.

Note the presence of the cos 6 factor, which arises because small circles of constant
latitude have a smaller circumference near the poles than near the equator.

The matrix Fisher distribution reduces to the uniform distribution if F = 0 and
becomes more concentrated about its modal value as the overall concentration
||F|| = {tr(FTF)}"/? increases. For theoretical purposes it suffices to limit atten-
tion to the diagonal case F = A = diag(§;), where 6; > 6, > |83]. As the concen-
tration increases, the distribution becomes concentrated near 6 = ¢ = y =0, and
asymptotically, f(X) becomes a trivariate normal distribution,

f(X)ocexp{—; [(51+53)62+(51+5z)¢2+(52+53)1l12]},

with respect to Lebesgue measure d0d¢dy.

4 Simulation

When developing acceptance-rejection simulation methods for directional distribu-
tions, there are several issues to consider:

o the need for good efficiency for a wide range of concentration parameters, from
uniform to highly concentrated. In similar problems on R?, the task is simpler
when distributions are closed under affine transformations; in such cases it is
often sufficient to consider just a single standardized form of the distribution.

o the need for a tractable envelope distribution.

e the presence of trigonometric factors in the base measure.

Efficient acceptance-rejection methods are available for the simpler directional
distributions, most notably the Best-Fisher method (Best and Fisher, 1979) for the
von Mises distribution. For the more complicated distributions, several MCMC al-
gorithms have recently been proposed, e.g. Green and Mardia (2006); Kume and
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Walker (2006); Hoff (2009). However, acceptance-rejection methods with reason-
able acceptance probabilities are to be preferred when available. The following steps
outline the way a new acceptance-rejection simmulation algorithm for the Bingham
distribution can be applied to the matrix Fisher distribution.

e A classic result from differential geometry states that the space SO(3) can be
identified with real projective space RP; under a one-to-one mapping, or equiv-
alently with the unit sphere S3 in R* under a one-to-two mapping. Each rotation
matrix on SO(3) maps to two antipodal points on this unit sphere. This identifi-
cation is limited to the case ¢ = 3. There does not seem to be any useful analogue
for SO(q), g > 3.

e The matrix Fisher distribution on SO(3) corresponds to the Bingham distribution
on S3.

e The PhD thesis of the second author gives a new method to simulate from the
Bingham distribution on §), for any p > 1 using an acceptance-rejection algo-
rithm with the angular central Gaussian distribution as an envelope.

e The angular central Gaussian distribution on S, is very simple to simulate.
Given a (p+1) x (p+ 1) covariance matrix X, simulate y ~ N,;(0,X) and
set z=y/||y||- Given the parameters of a Bingham distribution, it is possible to
determine a choice of X to give a good envelope.

e The use of an angular central Gaussian envelope for the Bingham distribution
is closely related to the use of a multivariate Cauchy density as an envelope for
simulating a multivariate normal distribution.

e the acceptance ratio is typically at least 45% for a wide range of parameters. This
value is very reasonable for practical purposes.
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