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Abstract In industrial research non-stochastic simulation models such as finite el-
ement simulations often replace real experiments nowadays. Such computer exper-
iments can be highly complex and time-consuming, therefore it has become com-
mon practice to fit easier to evaluate metamodels. The most popular metamodel is
the Gaussian process model, also known as Kriging model.
Sensitivity analysis investigates how the input variables contribute to the variation
of the outcome of the experiment. A popular method is the use of Sobol indices
which quantify the importance of individual input variables or groups of them.
This contribution first introduces computer experiments and sensitivity analysis. We
then present a new procedure described in [3] where a different kind of index, the
total interaction index, is applied to provide a deeper insight into the interaction
structure of the unknown function which can be displayed in a so-called FANOVA
graph. The information contained in the graph can then be used to derive data-driven
kernels to fit improved Kriging models. Finally we show an application to a com-
puter experiment in sheet metal forming.
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1 Kriging

In computer experiments, Kriging is a standard tool for prediction and analysis of
expensive functions (see e.g. [5], [2]). We denote the outcome of the computer ex-
periment for a vector of input variables x by Y (x). Then the assumed Kriging model
is
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Y (x) =
p

∑
k=1

βk fk(x)+Z(x) (1)

where ∑p
k=1 βk fk(x) models the trend at x and Z(.) a centred Gaussian process with

covariance function, or kernel K. It is assumed that Z(.) is stationary, thereby K
depends only on the difference between two points x1 and x2. K can therefore be
written as K(x1,x2) = k(x1 − x2) with k(.) = σ2R(.;θ), σ2 the process variance,
R the correlation function and θ a vector of parameters. Since the departure from
the trend relies on the kernel, its specification is an essential part of model build-
ing. In computer experiments, kernels are usually obtained as tensor products of
1-dimensional kernels gk (e.g. Gaussian or Matérn 5/2):

k(h) = σ2
d

∏
k=1

gk(hk;θk) . (2)

One reason for the success of Kriging is that it interpolates the data, which is desir-
able for deterministic functions like computer experiments. It also gives a measure
of uncertainty at unknown points, due to its probabilistic nature.

2 Sensitivity Analysis

Following the definition of [4] sensitivity analysis is the study of how the varia-
tion in the output of a model can be apportioned to different sources of variation. It
is an important tool in the understanding and interpretation of the model, and also
for variable ranking and reduction. There are several different methods for sensitiv-
ity analysis including scatter plots, correlations coefficients, screening methods and
regression analysis which are restricted to local sensitivities or to specific model
behaviours. A very popular global and model independent method for sensitivity
analysis is given by Sobol indices. This method is based on the so-called Functional
ANOVA (FANOVA) decomposition ([1], [6]).

Let X be a random vector over a domain ∆ with integration measure dν and
independent components X1, . . . ,Xd . Consider a function f such that f (X) is square
integrable. Then the FANOVA decomposition of f is given by:

f (X) = µ0 +
d

∑
i=1

µi(Xi)+ ∑
j<k

µ jk(X j,Xk)+ ∑
j<k<l

µ jkl(X j,Xk,Xl)+ . . .

+µ12...d(X1,X2, . . . ,Xd) (3)

where each term is centred (E(µJ(XJ)) = 0) and orthogonal (E(µJ(XJ)µJ′(XJ′)) =
0,∀J′ ̸= J). For i = 1, . . . ,d the term µi(xi) can be interpreted as main effects of Xi,
for j < k the term µ j,k(x j,xk), j < k as second order interaction effects and so on.

Taking the overall variance of the function the FANOVA decomposition leads to
an ANOVA like variance decomposition where the variance of each term µJ gives a
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sensitivity index for its effect: DJ =Var(µJ(XJ)). Sobol indices are obtained through
standardization by the overall variance:

SJ =
DJ

Var( f (X))
. (4)

They are an attractive tool for investigating a function f as they measure the im-
portance of main effects and interactions of any order and do not require limiting
assumptions. Their calculation can be done numerically [4]. A related index is the
total effect ST

k , which is the sum of all indices SJ with k ⊆ J. It is frequently used
as a measure for input variable importance since it includes the single as well as
interaction effect of the variable.

3 Kriging Kernels from FANOVA Graphs

In statistics mathematical graphs, defined as tuple G = (V,E) of a finite set of ver-
tices V and a set of edges E combining the vertices in V , are used in different con-
texts, e.g. for variable selection and for modelling dependence structure of random
vectors. Here the intention is to deal with the curse of dimension in sensitivity anal-
ysis: in general there are 2d −1 terms in the functional decomposition which is even
for medium values of d, e.g. d = 5, a huge amount. Therefore often only main ef-
fects and total effects are considered. Here a methodology is suggested [3], which
reduces the number of effects to be calculated but still gives good insight in the
interaction structure of the function f by using graphs.

A graph, called FANOVA graph, is set up such that each vertex in V represents
one input variable. The basic idea is that two vertices/input variables X j,Xk are
connected in the graph if there is any term index set J which includes j,k with
µJ(xJ) ̸≡ 0. An index to identify the edges is the so-called total interaction index,
which only takes a positive value if the vertices are connected. It is defined by:

Di j := Var

(
∑

I⊇{i, j}
µI(XI)

)
= ∑

I⊇{i, j}
DI . (5)

Assuming that a FANOVA graph is given, maximal complete subgraphs (cliques)
C1, . . . ,CL can be identified resulting in an additive decomposition of f . Now in
our framework, we can specify Kriging kernels to take advantage of the additional
knowledge given by the FANOVA decomposition, since it implies an additive de-
composition for the kernel of Z

k(h) =
L

∑
l=1

kCl (hCl ) (6)
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where each kCl is a kernel defined on the input variables given by the clique Cl . This
data-driven adaptation can improve the Kriging fit over the tensor-product kernel (2)
since it adapts the special interaction structure of f .

4 Application

The procedure is applied to data from a case study for the springback analysis dur-
ing sheet metal forming in [3], where the output reflects the amount of springback
after the forming process. The experiment has been simulated by the engineering
software Autoform. There are 3 independent input variables and a 33 full factorial
design is available as learning data set as well as another 101 runs for validation
purposes. Applying the total interaction indices for estimating the graph results in
a graph with just on edge (1,3) illustrated in Fig. 1, which can be interpreted such
that the second influence parameter just has additive influence. Adapting the Krig-
ing model according to the graph and applying it to the validation data set results
in an increase in precision of about 15% compared to the standard Kriging model
(RMSE standard Kriging model: 0.0867, RMSE adapted Kriging model: 0.0758).

Fig. 1 Resulting FANOVA
graph for the Autoform data
set. Only edge (1,3) is active.
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