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Abstract Mixed binomial models are often used to provide estimates for the un-
known size of a partially observed population when the number of identification
(sampling) sources is finite and known. By using a simple recursive relation, we de-
velop a regression based estimator which is always well defined and does not suffer
from weak identifiability, which is a characteristic of ML estimator.
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1 Introduction
Capture-recapture methods are used to estimate the unknown size N of a partially
observed population, based on samples observed through one or more identifica-
tion mechanisms. Established in the wildlife setting, these methods have been ex-
tended to epidemiology, see eg Chao (1989), and repeated diagnostic testing, see eg
Böhning and Patilea (2008). We focus on those empirical cases where the number of
sampling occasions, m, is known and fixed, n is the number of units identified by the
mechanism at least once, where n = n1 + n2 + · · ·+ nm, and nx, x = 1, . . . ,m repre-
sent the number of units identified exactly x times. If we denote by px, x = 1, . . . ,m
the probability of exactly x identifications, the ML estimator of N is known to be
the integer part of the Horvitz-Thompson estimator

N̂ = bn/(1− p0)c
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Southampton Statistical Sciences Research Institute, e-mail: D.A.Bohning@soton.ac.uk

Marco Alfò
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where p0 represents the probability that an individual is not registered. To obtain an
estimate N̂, we can proceed by estimating p0 or, directly, n0 given that N = n0 +n.

2 The ratio plot

According to the hypothesis of a fixed, known, number of sampling occasions m,
the number of times the i-th individual is identified can be modeled by a Binomial
distribution with probability π and index m:

px = Pr(X = x) =
(

m
x

)
π

x(1−π)m−x

where p0 = (1− π)m; in this case, the Horvitz-Thompson estimator is given by
N̂ = n

1−(1−π̂)m .
If we look at ratios of probabilities corresponding to successive counts, we may

observe that the following property holds:

px+1

px
=

( m
x+1

)
πx+1(1−π)m−x−1(m

x

)
πx(1−π)m−x

=
m− x
x+1

π

1−π
=

1
αx

π

1−π
→ αx

px+1

px
=

π

1−π

x = 0, . . . ,m−1. Using an empirical Bayes procedure, this ratio can be estimated by

αx
nx+1/N
nx/N

= αx
nx+1

nx

Plotting αx
nx+1

nx
versus x defines a graphical tool to measure the potential depar-

ture of the observed frequency counts from a homogeneous Binomial data generat-
ing process. This plot, called the ratio plot has been introduced by Hoaglin (1980)
in the Poisson case, for a review see Böhning et al. (2011).

The need for such a graphical device stems from the empirical evidence that, in
real applications, the homogeneous Binomial may not be appropriate because it does
not account for individual- or group-specific heterogeneity. Heterogeneity may be
observed (and stored in a covariate vector) and/or (partially) unobserved; in the latter
case, individual-specific variability in detection probabilities is modeled through a
mixing distribution on the Binomial parameter and mixed binomial models are used
to provide estimates for the unknown size of the population of interest. A major
problem is, in this context, the lack of identifiability of the mixing distribution which
may lead to inconsistent estimates of the population size, see e.g. Sanathanan (1977)
and Link (2003). To explain, let us suppose to observe the realizations of a truncated
mixed binomial distribution PQ(x) describing the number of times that an individual
is observed, with true mixing distribution Q. It can be proved that different mixing
distributions, say Q1 6= Q2 may lead to identical truncated marginal distributions,
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i.e. PQ1(x)=PQ2(x), ∀x = 1, . . . ,m. Therefore, PQ is not identifiable and the same
argument applies to the probability an individual is unseen.

3 Regression estimator

The ratio plot could helps detect substantial departures from the homogeneous bi-
nomial model, but its scope could be wider, due to the following property of general
mixed binomial models. A mixed binomial distribution with mixing Q(π) is

px =
∫ 1

0

(
n
x

)
π

x(1−π)n−xQ(π)dπ

Following the arguments given in Chao (1989) for m = 2, it is possible to prove that,
whatever the mixing distribution, the following propert holds:

α0
p1

p0
≤ α1

p2

p1
≤ α2

p3

p2
≤ ·· · ≤ αm−1

pm

pm−1

That is, the ratio plot is nondecreasing in x with equality holding only when homo-
geneity (ie standard binomial model) holds, see Böhning et al. (2011). Thus, we may
consider a regression model, a quasi-generalized linear model, where the function
g(·) links the estimated probability ratios to the number of identifications, x:

g
(

αx
px+1

px

)
= β

′
z(x)

Here z represents a vector containing a unit term together with one or more trasfo-
mations of x. Thus, every mixed binomial distribution could be represented by a
regression model via the ratio plot; a simple binomial distribution would lead to a
model with only the intercept term (αx

px+1
px

= p
1−p = β0), while in the Beta Binomial

case we would obtain:
αx

px+1

px
=

x+α

m− x−1+β

The question is whether every regression model may also lead to a proper count
distribution. It can be proved that given g(rx) = β

′z(x)/αx > 0, x = 0,1, . . . ,m−1
there exists a unique distribution px, x = 0, . . . ,m satisfying the following properties

• px+1 = rx px x = 0, . . . ,m−1
• ∑

m
x=1 px = 1→ p0 = 1

1+r0+r0r1+···+∏
m−1
x=0 rx

Thus, we may start by looking at observed frequencies of identification, define the
probability ratio estimates and the empirical model :

g
(

αx
nx+1

nx

)
= β

′
z(x)
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where obseved ratios may have a non-diagonal covariance matrix Σ . Fitting the
model trough weighted least squares and finding the fitted values, we get

r̂x = g−1
[
β̂
′
z(x)

]
/αx

By exploiting the recursive property linking p0 to probability ratios, we achieve
finally the following estimates for p0 and N:

p̂0 =
1

1+ r̂0 + r̂0r̂1 + · · ·+∏
m−1
x=0 r̂x

N̂0 =
n

1− p̂0
= n

1+ r̂0 + r̂0r̂1 + · · ·+∏
m−1
x=0 r̂x

r̂0 + r̂0r̂1 + · · ·+∏
m−1
x=0 r̂x

We get an estimate for p0, resp. N, derived from the observed frequency distribu-
tion only, where we do not need to choose the true (if any) mixing distribution, but
rather the function of x that best approximates the observed count distribution. The
main result of a simulation study performed by considering the Sydney screening
data, see Lloyd and Frommer (2008), is that the final estimate of the population size
is quite robust wrt the choice of the function of x used in the linear predictor.
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