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Abstract Suppose X ∼Nv(0,Σ) with v ≥ 1. If the probability density of X is cut
off outside a centered Euclidean ball with given radius, the matrix S of the second
truncated moment differs from Σ . In this talk we discuss the effects of the spherical
truncation and the reconstruction of Σ from S. The latter is achieved numerically
thanks to a fixed point iteration. We study the convergence rate of the iteration and
propose an acceleration scheme.
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1 A motivating example

Consider following experimental situation. An accelerator physicist prepares a par-
ticle beam with Gaussian transversal profile. The experimenter knows a priori the
spatial distribution of the beam, i.e. covariance matrix Σ of the two–dimensional
coordinates of the particles on a transversal slice of the beam. The beam travels
straightforward until it enters a linear coaxial pipeline with circular profile. Part
of the beam is absorbed, part propagates within the pipeline. At the end of beam
flight the physicist wants to know if the transversal distribution of the particles is
changed, due to inter–beam interactions. Accordingly, he measures again the spatial
covariance matrix of the two dimensional coordinates. Unfortunately, the pipeline
cut off introduced a bias on the covariance matrix, which is therefore not directly
comparable with the original one. It is possible to remove the bias? In the sequel
we generalize the problem to v≥ 1 dimensions and discuss its solution. For a fully
detailed discussion, we refer the reader to ref. [2].
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2 Set up of the problem

Let X ∈ Rv be a random vector with jointly normal distribution Nv(0,Σ) in v ≥1
dimensions. The probability that X falls within Bv(ρ)≡ {x ∈Rv : xTx < ρ} is mea-
sured by the Gaussian integral

α(ρ;Σ) ≡ P [X ∈Bv(ρ)] =
1

(2π)v/2|Σ |1/2

∫
Bv(ρ)

dvx e−
1
2 xTΣ−1x . (1)

Since Σ is symmetric positive definite, it has real orthonormal eigenvectors Σv(i) =
λiv(i). Let us denote by R ≡ {v( j)

i }v
i, j=1 the special orthogonal matrix having these

vectors as columns and by Λ ≡ diag(λ ) = RTΣR the diagonal counterpart of Σ ,
being λ = {λ1, . . . ,λv}. From the invariance of Bv(ρ) under rotations, it follows
that α depends upon Σ just by way of λ . Accordingly, we rename the Gaussian
probability content of Bv(ρ) as

α(ρ;λ )≡
∫

Bv(ρ)
dvx

v

∏
m=1

δ (xm,λm) , δ (y,η) =
1√
2πη

exp
{
− y2

2η

}
. (2)

By contrast, the matrix of the second truncated moments S depends actually on
both λ and R. An explicit calculation yields

α(ρ;λ ) ·Si j =
v

∑
k,`=1

RkiR` j

∫
Bv(ρ)

dvx xkxl

v

∏
m=1

δ (xm,λm) . (3)

From eq. (3) it follows that Σ and S share R as a common diagonalizing ma-
trix. In other words, if M ≡ diag(µ) is the diagonal matrix of the eigenvalues
µ = {µ1, . . . ,µv} of S, then M = RTSR. Moreover, µk is related to λk by

µk = λk
αk

α
, αk(ρ;λ )≡

∫
Bv(ρ)

dvx
x2

k
λk

v

∏
m=1

δ (xk,λk) ; k = 1, . . . ,v . (4)

Eqs. (4) constitute a system of non–linear integral equations, with the eigenvalues
λk as unknown variables and the eigenvalues µk as input parameters. In order to
solve it, we introduce the operator

T : Rv
+×Rv

+×R+ → Rv
+ , Tk(λ ; µ;ρ) = µk

α

αk
(ρ;λ ) , k = 1, . . . ,v . (5)

and recast eq. (4) in the equivalent vectorial form λ = T (λ ; µ;ρ). Hence, we see
that the full eigenvalue spectrum λ is a fixed point of the operator T . This suggests
to obtain λ as the limit of a sequence

λ
(0) = µ , λ

(n+1) = T (λ (n); µ;ρ) ; λ = lim
n→∞

λ
(n) . (6)
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Under proper conditions on ρ and µ , the sequence can be shown to converge, see
ref. [2]. The convergence is proved by showing that i) the sequence is component–
wise monotonic increasing; ii) the sequence is component–wise bounded from
above by any fixed point of T ; iii) if T has a fixed point, this must be unique. Since
λ is a fixed point of T , the first two properties imply that the sequence converges.
Moreover, it can be easily shown that the limit is a fixed point of T . Property iii)
guarantees that the limit of the sequence is precisely λ .

3 Numerical computation of the Gaussian integrals

The integrals α and αk cannot be calculated with paper and pencil, owing to the
symmetry mismatch between N (0,Σ) and Bv(ρ). However, it is possible to resort
to numerical computation. Many years ago Ruben [1] has shown that α can be
expanded as an infinite sum of chi–square distributions

α(ρ;λ ) =
∞

∑
m=0

cm(s;λ )Fv+2m(ρ/s) , (7)

with known coefficients cm. The scale factor s has the same physical dimension as
ρ and λ . It is introduced in order to factorize the dependence of α upon ρ and λ

at each order of the expansion. We can prove that αk admits an analogous series
representation

αk(ρ;λ ) =
∞

∑
m=0

ck;m(s;λ )Fv+2(m+1)(ρ/s) (8)

with different coefficients ck;m. A detailed discussion of the coefficients cm and ck;m
is out of reach in this context. About this, we refer the reader to refs. [1, 2]. Eqs. (7)
and (8) can be approximated with controlled systematic error by retaining a few
terms. It is not difficult to achieve a fast and robust numerical implementation. In
typical situations, the minimum number of terms required to keep the error below
1.0×10−14 does not exceed a hundred.

4 Numerical experiences

Given ε > 0, the number of steps nit needed for an approximate convergence with
relative precision ε , i.e.

nit ≡ min
n≥1

{
n :
||λ (n)−λ (n−1)||∞
||λ (n−1)||∞

< ε

}
, (9)

depends not only upon ε , but also on ρ and µ . In order to characterize distribu-
tionally the convergence rate of the reconstruction process, we must integrate out
the fluctuations of nit due to changes of µ , i.e. we must average nit by letting
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Fig. 1 Log–log plot of n̄it vs. ρ at v = 10 from a Monte Carlo simulation of nit with λ taken from
Σ ∼Wv(p, p−1Iv), p = 2v, ω = 1.9 and ε = 1.0×10−7.

µ fluctuate across its own probability space. In this way, we obtain the quantity
n̄it ≡ Eµ [nit|εT,ρ], which better synthesizes the cost of the reconstruction for given
ε and ρ . To proceed concretely, we extract λ from Σ ∼ Wv(p, p−1Iv) (the ensem-
ble of Wishart matrices with p degrees of freedom and scale matrix p−1Iv) with p
properly chosen, and then we obtain µ by truncating λ according to eq. (4).

The basic iteration of eq. (6) is too slow to be of practical interest. For instance,
at v = 10, ρ ' 0.13 and ε = 1.0×10−7 (corresponding to a reconstruction of λ with
single floating–point precision) it is rather easy to extract realizations of µ which
require nit ' 15.000 to converge. An improvement of the basic scheme is achieved
via over–relaxation, i.e.

λ
(0)
k = µk ,

λ
(n+1)
k = λ

(n)
k +ω

[
Tk(λ

(n))−λ
(n)
k

]
, k = 1, . . . ,v

. (10)

An example of dependence of n̄it upon ρ with the over–relaxed scheme is shown in
Fig. 1. From the plot, we recognize the scaling law

log n̄it(ρ,v,ε) = a(v,ε)−b(v,ε) logρ , (11)

showing that n̄it increases polynomially in 1/ρ and exponentially in v.
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