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Abstract In the paper, we consider the estimation of indicators on poverty and social 
exclusion for population subgroups or domains and small areas. For at-risk-of poverty 
rate, we discuss indirect estimators including model-assisted logistic generalized 
regression estimators and new model calibration estimators. Logistic mixed models are 
used in these methods. For quintile share ratio, indirect model-based synthetic 
estimators and new calibration-based predictor-type methods using linear mixed models 
are considered. Unit-level auxiliary data are incorporated in the estimation procedures. 
Design-based direct estimators that do not use auxiliary data and models are used for 
comparison. Design bias and accuracy of estimators are examined with simulation 
experiments using register data maintained by Statistics Finland and semi-synthetic data 
generated from the EU-SILC survey.  

1. Introduction 

There are increasing demand in Europe and elsewhere for reliable statistics on poverty 
and social exclusion produced for regions and other population subgroups or domains. 
Small area estimation of indicators on poverty and social exclusion has been recently 
investigated in research projects funded by European Commission under the 5th and 7th 
Framework Programmes (FP5 and FP7). Model-based small area estimation methods 
were studied in the FP5 project EURAREA (Enhancing Small Area Estimation 
Techniques to meet European Needs, 2002-2004). The aim of the FP7 project SAMPLE 
(Small Area Methods for Poverty and Living Condition Estimates, 2008-2011) was to 
develop new indicators for inequality and poverty with attention to social exclusion and 
deprivation, as well as to develop and implement methods for small area estimation of 
the traditional and new indicators. The FP7 project AMELI (Advanced Methodology 
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for European Laeken Indicators, 2008-2011) included several specialized sub-projects 
(work packages) and covered a wide range of topics on poverty, social exclusion and 
social cohesion. Conceptual background, indicator construction and measurement and 
estimation of indicators on poverty and social exclusion were discussed (Münnich et al., 
2011). A sub-project concentrated on small area estimation methods of selected poverty 
indicators (Lehtonen et al., 2011).  

Indicators on poverty and social exclusion investigated in AMELI included at-risk-
of poverty rate, relative median at-risk-of poverty gap, quintile share ratio and the Gini 
coefficient. In this paper, we discuss the methods for small area estimation of poverty 
rate and quintile share ratio introduced in Lehtonen et al. (2011) and developed further 
in Veijanen and Lehtonen (2011) and Lehtonen and Veijanen (2012). Unit-level 
auxiliary data are incorporated in the estimation procedures. Design-based direct 
estimators that do not use auxiliary data and models are used for comparison. Design 
bias and accuracy of estimators are examined with design-based simulation experiments 
using register data maintained by Statistics Finland and semi-synthetic data generated 
from the EU-wide SILC survey (Statistics on income and living conditions). 

The paper is organized as follows. Estimation for poverty rate is examined in 
Section 2. Methods for quintile share ratio are discussed in Section 3.  

2. Estimation of poverty rate for regions 

For poverty rate, we discuss indirect estimators including model-assisted logistic 
generalized regression estimators (Lehtonen and Veijanen, 1998; Lehtonen, Särndal 
and Veijanen, 2003, 2005; Lehtonen and Veijanen 2009) and new model calibration 
estimators (Lehtonen et al., 2011; Lehtonen and Veijanen, 2012). Logistic mixed 
models are used in these methods. 

In classical model-free calibration (Deville and Särndal, 1992; Särndal, 2007), a 
calibration equation is imposed: the weighted sample totals of auxiliary variables 
reproduce the known population totals. In model calibration introduced by Wu and 
Sitter (2001), a model is first fitted to the sample. Calibration weights are determined 
using the fitted values instead of the original auxiliary variables: the weighted sample 
total of fitted values reproduces the population total of predictions. Our calibration 
equations for domain estimation specify that the weighted total of fitted values over a 
subgroup of the sample equals the sum of predictions over the corresponding 
population subgroup. 

A model calibration procedure for domain estimation consists of two phases, the 
modelling phase and the calibration phase. There is much flexibility in both phases.  
We have chosen a mixed model formulation involving components that account for 
spatial heterogeneity in the population. The predictions calculated in the modelling 
phase are used in the calibration phase when constructing calibration equation and a 
calibrated domain estimator. Calibration can be defined at the population level, at the 
domain level or at an intermediate level, for example at a regional level 
(neighbourhood) that contains the domain of interest. Further, in the construction of the 
calibrated domain estimator, a “semi-direct” approach involves using observations only 
from the domain of interest, whereas in a “semi-indirect” approach, also observations 
outside the domain of interest are included. 
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The finite population is denoted {1,2,..., ,..., }U k N= , where k refers to the label of 
population element. A domain dU  is a subset of U such as a regional population. The 
number of units in the domain is denoted by dN . In sample s, the corresponding subset 
is defined as d ds U s= ∩ ; it has dn  observations. The domains are of unplanned type. 
Inclusion probabilities are kπ  and design weights are 1 /k ka π= .  

In order to account for possible differences between regions, a mixed model 
incorporates domain-specific random effects 2~ (0, )

dd uu N σ  for domain dU , or 

regional random effects 2~ (0, )
rr uu N σ  for region rU , where d rU U⊂ . We next 

consider the case of du . For a binary y-variable, a logistic mixed model is of the form 
exp( )( | ) { 1| ; } ,

1 exp( )
k d

m k d k d
k d

uE y u P y u
u

′ +
= = =

′+ +
x ββ
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where kx  is a known vector value for every k U∈  and β  is a vector of fixed effects 
common for all domains. The parameters β and 2

duσ  are first estimated from the data, 

and estimates ˆdu  of the random effects du  are then calculated. Predictions 
ˆˆ ˆ{ 1 | ; }k k dy P y u= = β  are calculated for every k U∈ .  

The domain total of a study variable y is defined by 

 d

d k
k U

t y
∈

= ∑ , (1) 

where ky  denotes the value of the study variable for element k. Horvitz-Thompson 
(HT) estimator  of domain total (1) is a direct estimator as it only involves observations 
from the domain of interest: 

  
ˆ .

d

d k k
k s

t a y
∈

= ∑
 

(2) 

The estimator is design unbiased but it can have large variance, especially for 
small domains. HT does not incorporate any auxiliary data. 

Generalized regression (GREG) estimators (Särndal et al., 1992; Lehtonen and 
Veijanen, 2009) are assisted by a model fitted to the sample. By choosing different 
models we obtain a family of GREG estimators with same form but different predicted 
values (Lehtonen et al., 2003, 2005). Ordinary GREG estimator 
  ;

ˆ ˆ ˆ( )
d d

d GREG k k k k
k U k s

t y a y y
∈ ∈

= + −∑ ∑  (3) 

incorporating a linear fixed-effects regression model is often used to estimate domain 
totals (1) of a continuous study variable. For a binary or polytomous response variable, 
a logistic model formulation is often chosen. LGREG (logistic GREG; Lehtonen and 
Veijanen, 1998) estimates the frequency df  of a class C in each domain. A logistic 
regression model is fitted to indicators { }k kv I y C= ∈ , k s∈ , using the design 
weights. In the MLGREG estimator (Lehtonen et al. 2005), we use a logistic mixed 
model for (4) involving fitted values ˆˆ ˆ{ 1 | ; , }k k d kp P v= = u x β . The random effects are 
associated with domains dU  or with larger regions rU . The MLGREG estimator of 
the class frequency in dU  is 

  
;

ˆ ˆ ˆ( )
d d

d MLGREG k k k k
k U k s

f p a v p
∈ ∈

= + −∑ ∑ . (4) 
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The calculation of ˆkp  for all dk U∈ , 1,...,d D=  requires access to unit-level 
population data on auxiliary variables.  

In population level calibration (Wu and Sitter, 2001), the weights must satisfy 
calibration equation 

  
ˆ,i i i i

i s i U i U

w z z N y
∈ ∈ ∈

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ , (5) 

where ˆ(1, )i iz y ′= . Using the technique of Lagrange multiplier ( λ ), we minimize  

  

2( )k k
i i i

k s i s i Uk

w a w z z
a

λ
∈ ∈ ∈
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⎝ ⎠
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subject to the conditions (5). The equation is minimized by weights 

  ( )( ) 1k k kw a zλ λ′= + , (6) 
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1

i i i i i i
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−
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In domain estimation, these weights are applied over a domain: the estimator is 
  ;

ˆ
d

d pop k k
k s

f w y
∈

= ∑ . (7) 

A straightforward generalization of the population-level calibration equation is a 
domain-level calibration equation  

  
ˆ,

d d d

di i i d i
i s i U i U

w z z N y
∈ ∈ ∈

⎛ ⎞
= = ⎜ ⎟⎜ ⎟
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where the weights diw  are specific to the domain. From (8) we see that the domain 
sizes must be known. We minimize 

  
2( )

d d d

dk k
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λ
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subject to (8). The solution is ( )dk k dw w λ= , defined by (6) for 
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The domain estimator is then a weighted domain sum  
  ;

ˆ
d

d s dk k
k s

f w y
∈

= ∑ . (9) 

We call this estimator “semi-direct”, as the sum only contains y-observations from 
the domain of interest. It is not a direct estimator, however, as the weights are 
determined by a model that is fitted to the whole sample. Various semi-direct 
calibration estimators are possible; see Lehtonen and Veijanen (2012). 

We introduce next various new “semi-indirect” estimators. They are weighted 
sums over a set that is larger than the domain of interest. Our goal is to “borrow 
strength” from other domains, in an attempt to reduce mean squared error. A semi-
indirect domain estimator incorporates whole sample, an enclosing aggregate of regions 
in a hierarchy of regions or the set of neighbouring domains, including the domain 
itself. A neighbourhood of a region comprises regions that share a common border with 
the specified region or regions with centre closer than a given distance threshold. In a 
semi-indirect estimator, we use supersets d dC U⊃ of domains with corresponding 
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sample subsets d dr C s= ∩ . In our simulations the supersets are composed of domains. 
We define the domain estimator as a weighted sum of all observations in dr : 

  
;

ˆ
d

d r dk k
k r

f w y
∈

= ∑  

   (10) 
The calibration equation is 

  d d

di i i
i r i U

w z z
∈ ∈

=∑ ∑  (11) 

Note that the sum on the left side of (11) extends over dr  which corresponds to 
population subset dC , a larger set than dU  on the right side of the equation. We have 
required that the weights dkw  are close to weights ka  in the domain and close to zero 
outside the domain. The weights minimize  

  

2( )

d

dk dk k

k r k

w I a
a∈

−∑  

where { }dk dI I k s= ∈ , subject to the  calibration equations (11) when 
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Variance estimation of GREG estimators can be handled analytically (Lehtonen 
and Veijanen, 2009) but there is not yet theory of variance estimation of model 
calibration estimators for domains, so bootstrap is recommended (Gershunskaya et al., 
2009). 

At-risk-of-poverty rate is the proportion of poor people in a domain with 
equivalized income at or below the poverty line t. Our goal is to estimate 

(1 / ) { 0.6 }
d

d d k
k U

R N I y M
∈

= ≤∑ . An estimate M̂  of reference median income M is 

obtained from the HT estimated distribution function ˆ ˆ( ) (1 / ) { }U k k
k s

F t N a I y t
∈

= ≤∑ . The 

distribution function defined in domain dU  is estimated by 

HT: ˆ ˆ( ) (1 / ) { }
d

d d k k
k s

F t N a I y t
∈

= ≤∑ , where ˆ
d

d k
k s

N a
∈

= ∑ .  

Direct (default) HT-CDF estimator of poverty rate is 

  ;
ˆ ˆˆ (0.6 )d HT dr F M= . (12) 

To estimate domain poverty rate by MLGREG or model calibration, we first 
estimate the domain total of a poverty indicator ˆ{ 0.6 }k kv I y M= ≤ , which equals 1 for 
persons with income below or at the poverty line and 0 for others. The estimate of the 
domain total dt  is then divided by the known domain size dN  (or, its estimate ˆ

dN ). 
For example, the MLGREG estimator of the poverty rate is  

  ; ;
ˆˆ /d MLGREG d MLGREG dr f N= . (13) 

For design-based simulation experiments, an artificial population of one million 
persons was constructed from real income data of Statistics Finland for seven NUTS 
level 3 regions in Western Finland. In the simulations, K = 1000 samples of n = 5000 
persons were drawn with without-replacement probability proportional to size (PPS) 
sampling from the unit-level population. For PPS, an artificial size variable was 
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generated as a function of the socio-economic status of household head. People with 
low income appear in samples with larger probability than people with large income.  

Our models incorporated the following auxiliary variables: age class (0-15, 16-24, 
25-49, 50-64, 65- years), gender with interactions with age class, socio-economic status 
of the household head (wage and salary earners, farmers, other entrepreneurs, 
pensioners, and others), and labour force status (employed, unemployed, and not in 
workforce). We created indicators for each class of a qualitative variable. As domains 
we used the 36 NUTS4 regions. The NUTS classification is hierarchical: each NUTS4 
region is contained within a larger NUTS3 region. 

The methods were nearly design unbiased by the construction principle (bias 
results not shown). The accuracy was measured by relative root mean squared error: 

  

2

1

ˆ(1 / ) ( ) /
K

dk d d
k

RRMSE K θ θ θ
=

= −∑ . 

We present the averages of RRMSE over domain classes defined by expected 
domain sample size (Table 1): Minor (0-50 units), Medium-sized (50-100) and Major 
(100-) domains. The logistic mixed model contains regional random intercepts 
associated with NUTS4 regions. Design weights were incorporated into the model 
fitting.  

All methods except calibration at population level outperformed the direct 
estimator. In small domains, MLGREG had slightly better accuracy than calibration 
methods. The choice of the model did not have much effect on most estimators.  

 
Table 1. Mean relative root mean squared error (RRMSE) (%) of poverty rate 
estimators over domain size classes, under logistic mixed model formulation. 

Expected domain sample size  
Estimator Minor Medium Major 

 
All 

Direct 41.1  28.9  18.0  26.7  
MLGREG 39.6  28.6  17.8  26.2  
Semi-indirect model calibration estimators 
SI-population 39.7  28.6  17.8  26.2  
SI-regional 39.7  28.5  17.8  26.2  
SI-spatial 39.7  28.6  17.8  26.2  

3. Estimation of quintile share ratio for regions 

In an indirect model-based predictor-type estimator for quintile share ratio (QSR) based 
on unit-level auxiliary data, predictions obtained from a linear mixed model are 
plugged into the formula of QSR defined at the population level. The estimator is 
expected to have small variance but as a model-based estimator, it can suffer from 
serious design bias. To decrease design bias, we define a transformation that brings the 
percentiles of transformed predictions closer to the percentiles of sample values 
(Veijanen and Lehtonen, 2011). To account for domain differences, a linear mixed 
model incorporates domain-specific random effects 2~ (0, )d uu N σ . The model is  
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  ,k k d k dY u k Uε′= + + ∈x β , 2~ (0, )k Nε σ .  
The random effects may also be associated with aggregates of domains. The 

parameters β , 2
uσ  and 2σ  are first estimated from the data by using ML or REML 

methods, and the values of the random effects are then predicted. This yields 
predictions ˆˆ ˆ ,k k d dy u k U′= + ∈x β . 

QSR compares the average equivalized incomes in the poorest and the richest 
quintile. Each quintile contains 20 % of people; in the design-based case accounting for 
20 % of design weights. The default (direct) estimators of the first (S20) and the fifth 
quintile average (S80) are Hájek estimators. The direct quintile share estimate is the 
ratio of S20 to S80. The predictor-type estimator of quintile share in a domain is the 
ratio of averages of predictions in the first and fifth quintiles. 

Linear mixed model is fitted to log( 1)k kz y= +  and the fitted values ˆkz  are back-

transformed to ˆ ˆexp( ) 1k ky z= − . We correct for bias and spread of predictions by a 
nonlinear transformation that brings the distribution of predictions closer to the 
distribution of observed values ky  ( dk s∈ ) in terms of percentiles, denoted by ˆcdp  and 

cdp , respectively. The percentiles cdp  of sample values are obtained from the 

estimated CDF { };
ˆ ˆ( ) (1 / )

d

HT d d k k
k s

F y N a I y y
∈

= ≤∑ . Our goal is to obtain transformed 

predictions ˆd
k ky e yα γ=%  whose percentiles, denoted cdp% , are close to cdp  on logarithmic 

scale. To avoid unstable estimates in the smallest domains, we pooled the percentile 
data from all domains and minimized 

 ( ) ( )( ) ( ) ( )( )2 2

1 1

ˆlog log log log
C C

cd cd d cd cd
d c d c

p p p pα γ
= =

− = + −∑∑ ∑∑% , 

where C = 99. The percentile-adjusted, or p-adjusted, predictions involve OLS 
estimates of parameters dα  and γ : 

  ( ) ( )ˆ ˆ ˆlog log ( )k d k dy y k Uα γ= + ∈% . (14) 
The transformation (14) was applied only to the positive predictions, with 

percentiles ˆcdp
 
and cdp

 
calculated from positive predictions and sample values.  

In simulation experiments we used a semi-synthetic data set of about ten million 
persons, constructed from SILC data sets (Alfons et al., 2011) to mimic the regional 
and demographic variation of income statistics in the EU. We applied SRSWOR (n = 
2000). As domains we used 40 regions. The domains were classified to minor, medium 
and major domains by expected sample size with class boundaries at 45 and 55 units. 
Our models fitted to equivalized income variable incorporated age class and gender 
with interactions, attained education level (ISCED), activity (working, unemployed, 
retired, or otherwise inactive) and degree of urbanisation of residence (three classes). 
The mixed models with random intercepts associated with regions, were fitted using 
ML. K = 1000 samples were drawn. Design bias and accuracy were assessed by 

absolute relative bias 
1

ˆ| (1 / ) ( ) | /
K

dk d d
k

ARB K θ θ θ
=

= −∑  and RRMSE (see Section 2). 

Accuracy of the new p-adjusted predictor was much better than that of the default 
(direct) estimator, in all domain size classes (Table 2). However, the estimator was still 
design biased, especially in small domains, and the bias was somewhat larger than that 
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of the direct estimator. For MSE estimation, different variants of bootstrap can be used 
(e.g. Gershunskaya et al., 2009). 
 
Table 2. Results with quintile share ratio QSR in regions. 

ARB (%) RRMSE (%) 
Expected domain sample size Expected domain sample  size 

 
Estimator 

Min
or 

Medium Major All Minor Medium Major All  

Direct  4.9  4.6 3.4 4.4 43.5 41.7 38.5  41.3  
p-adjusted predictor  12.3  8.6 5.7 8.9 16.0 13.6 11.4  13.7  
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