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Abstract We construct a response adaptive design, described in termsof two-color
urn model targeting a fixed asymptotic allocation. We prove asymptotic results for
the process of colors generated by the urn and for the processof its compositions.
We also discuss the use of this urn model, for an estimation problem, in sequential
clinical trials.
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1 Introduction

Consider a clinical trial with two competitive treatments,sayR andW . We construct
a response adaptive design, described in terms of two-colorurn model, targeting any
optimal fixed asymptotic allocation. A large class of response-adaptive randomized
designs is based on urn models, a classical tool to guaranteea randomized device
[3, 7], to balance the allocations [2] or to construct designs which asymptotically
assign all subjects to the best treatment [4, 6]. Thetwo-color, Randomly Reinforced
Urn (RRU) introduced in [5] and studied in [6], is a randomized device that is able
to target the optimal treatment, see [6]. Here we modify the reinforcement scheme
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of the urn in order to target asymptotically an optimal allocation proportion. Let us
consider two probability distributionsµR andµW with support contained in[α,β ],
where 0≤ α ≤ β < +∞ and a sequence(Un)n of independent uniform random
variables on(0,1). We will interpretµR and µW as the laws of the responses to
treatmentR andW , respectively. We assume that both the meansmR =

∫ β
α xµR(dx)

andmW =
∫ β

α xµW (dx) are strictly positive. To get some intuition into the process
Xn, visualize an urn initially containingr0 balls of colorR andw0 balls of colorW .
Set

R0 = r0, W0 = w0, Z0 =
R0

D0
.

At time n = 1, a ball is sampled from the urn; its color isX1 = 1[0,Z0](U1), a ran-
dom variable with Bernoulli (Z0) distribution. LetM1 andN1 be two independent
random variables with distributionµR andµW , respectively; assume thatX1,M1 and
N1 are independent. Next, if the sampled ball isR, it is replaced in the urn together
with X1M1 balls of the same color ifZ0 < η , whereη ∈ (0,1) is a suitable param-
eter, otherwise the urn composition does not change; if the sampled ball isW , it
is replaced in the urn together with(1−X1)N1 balls of the same color ifZ0 > δ ,
whereδ < η ∈ (0,1) is a suitable parameter, otherwise the urn composition does
not change. So we can update the urn composition in the following way

R1 = R0+X1M11[Z0<η], W1 =W0+(1−X1)N11[Z0>δ ], Z1 =
R1

D1
.

Now iterate this sampling scheme forever. Thus, at timen+ 1, given the sigma-
field Fn generated byX1, ...,Xn,M1, ...,Mn andN1, ...,Nn, let Xn+1 = 1[0,Zn](Un+1)
be a Bernoulli(Zn) random variable and, independently ofFn andXn+1, assume that
Mn+1 andNn+1 are two independent random variables with distributionµR andµW ,
respectively. Set

Rn+1 =Rn+Xn+1Mn+11[Zn<η], Wn+1 =Wn+(1−Xn+1)Nn+11[Zn>δ ], Zn+1 =
Rn+1

Dn+1
.

We thus generate two infinite sequences(Xn)n∈N and(Zn)n∈N of random variables,
representing the color of the ball sampled from the urn and the proportion of balls
of colorR, respectively.

In [1] the following asymptotic convergence result is proved.

Theorem 1.The sequence of proportions (Zn)n∈N of the urn process converges al-
most surely to the following limit

limn→∞ Zn =





η if
∫ β

α xµR(dx)>
∫ β

α xµW (dx),

δ if
∫ β

α xµR(dx)<
∫ β

α xµW (dx).

The urn proportion process(Zn)n∈N converges to a value which depends on the
unknown means of the reinforcement distributions. This aspect characterizes the
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adaptive nature of the design based on the urn model. In particular this modified
urn model generates a process(Zn)n∈N that converges to one of the values{δ ,η},
according the reinforcement with the greatest mean. WhenmR = mW we don’t have
the explicit form of the asymptotic distribution of the urn proportionZn. Neverthe-
less, we know that(Zn)n∈N converges to a random variableZ∞ whose distribution
has no atoms and its support isS∞ = [δ ,η ].

2 An application to estimation in clinical trials

Let us consider a treatmentW , and suppose its mean effect on patients to be es-
timated during an adaptive clinical trial. Suppose that thedistribution of random
effect on patients of the competitorR can be modified arbitrarily. The aim of the
experiment is to infer the mean effect of the treatmentW by modifying suitably the
mean effect of treatmentR. Let us considerK urns with the same initial composition
(R0,W0). Red balls are associated with treatmentR, while white balls with treatment
W . We will denote withZ j = (Z j

n)n∈N the process of the urn proportion in thejth

urn, for j ∈ {1,2, ..,K}.
At the beginning, we choose the distribution of treatmentR, in order to set the

mean of the random response to an initial valuemR,1. Let K urn processes start
simultaneously. At each step, we draw a ball form every urn and we update the
composition of each urn independently, following the modeldescribed in section 1.
After reinforcements have been performed, we will have the compositions ofK urns,
and we can compute the empirical cumulative distribution functionF̂n of the random
variableZn. Thanks to the Theorem 1, for everyx ∈ [0,1], F̂n(x) must converge to





Fη(x) = 1{x≥η} if mR,1 > mW ,

Fδ (x) = 1{x≥δ} if mR,1 < mW .

In the case ofmR,1 = mW , we compute off line the asymptotic cumulative distri-
butionF̂e of Z∞ = Ze. In other words, we simulate otherM urns, in order to get the
empirical distribution of the limitZ∞. For this purposeM, the number of urns andm
the number of draws can be arbitrarily large.

1
M

M

∑
i=1

1{Zi
m<x} ≃ F̂e(x), for large m and M.

At each step, once every urn has been reinforced, we use the Wasserstein dis-
tance(dW ) to compute the distances betweenZn and the three asymptotic possible
distributions. Then, we take the minimum among these distances and if it is lower
than a suitable thresholdα we can assume the proportionZn has reached its limit.
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Otherwise, the urn processes go on with further draws. We stop the algorithm at step
ñ if

min
{

dW (Zñ,δη) ,dW (Zñ,Ze) ,dW (Zñ,δδ )
}
=

min

{∫ 1

0
|Fñ(x)−Fη(x)|dx ,

∫ 1

0
|Fñ(x)− F̂e(x)|dx ,

∫ 1

0
|Fñ(x)−Fδ(x)|dx

}
< α.

When the stopping rule is verified, different scenarios are possible. If the mini-
mum distance isd(Zñ,δη ) we can assumemR,1 was greater than the unknown mean
mW . For this reason, we change the composition of treatmentR to decrease the
mean effect to a new suitable valuemR,2 < mR,1. Alternatively, if the lowest dis-
tance wasd(Zñ,δδ ) we increase the mean effect of treatmentR, in order to have a
meanmR,2 > mR,1. In any case, we have that the difference between the two means
is decreasing, i.e.,|mR,2−mW | < |mR,1−mW |. At this point, we start over withK
urn processes, with the same initial composition (r0,w0). The model is the same as
before, with the only difference that the mean of the reinforcement of red balls has
been changed. Now, random responses to treatmentR follow a distribution law with
an updated mean value equalmR,2, whereas random responses to treatmentW have
the previous mean value equal tomW .

The experiment goes on until the stopping rule is verified andd(Zñ,Ze) < α. If
we calli0 the number of times we have modified the mean of the random responses
to treatmentR, we can suppose thatmR,i0 = mW and this is a good estimate of the
unknown meanmW . Compared to a non-adaptive design this procedure, not only
provides a good estimate ofmW , but also allocates a greater proportion of patients
to the best treatment.
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