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Abstract In longitudinal studies, subjects may be lost to follow up (a phenomenon
which is often referred to as attrition) or miss some of the planned visits thus gen-
erating incomplete responses. When the probability for nonresponse, once condi-
tioned on observed covariates and responses, still depends on the unobserved re-
sponses, the dropout mechanism is known to be informative. A common objective
in these studies is to build a general, reliable, association structure to account for
dependence between the longitudinal and the dropout processes. Starting from the
existing literature, we introduce a random coefficient based dropout model where
the association between outcomes is modeled through discrete latent effects; these
latent effects are outcome-specific and account for heterogeneity in the univariate
profiles. Dependence between profiles is introduced by using a bidimensional rep-
resentation for the corresponding distribution. In this way, we define a flexible latent
class structure, with possibly different numbers of locations in each margin, and a
full association structure connecting each location in a margin to each location in
the other one. By using this representation we show how, unlike standard (unidi-
mensional) finite mixture models, an informative dropout model may properly nest
a non informative dropout counterpart.
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1 Introduction

In longitudinal studies, measurements from the same individuals (units) are taken
repeatedly over time. These kind of studies often suffer of attrition, since indi-
viduals may dropout of the study before the scheduled completion time and thus
present incomplete data. When the reasons for dropout is related to unobserved
responses, even after controlling for available covariates and responses, the miss-
ingness is known to be informative. In such studies, scientific interest may focus on
the association structure between the longitudinal measurements and the missigness
process. In a seminal paper, [10] discuss a class of statistical models for non ignor-
able dropout, referred to as Random Coefficient Based Dropout Models (RCBDM),
where marginal association between the longitudinal and the survival process arises
due only to dependent, outcome-specific, random coefficients. Separate models are
hypothesized for the two partially observed processes, which share a common (cor-
related) set of random coefficients. In the context of binary responses, [2] propose
an extension of these models by defining a semi-parametric selection model where
the longitudinal and the dropout processes are linked through correlated random ef-
fects. The random effects are usually assumed to be Gaussian, but this assumption
has been questioned by some authors, see eg [14], since the resulting inferences can
be sensitive to assumptions that cannot be verified from the available data. In this
perspective, [13], investigated the effect of misspecifying the random effect distri-
bution on parameter estimates and standard errors when a shared parameter model is
considered. They showed that, as the number of repeated longitudinal measurements
per individual grows, the effect of misspecifying the random effect distribution van-
ishes for certain parameter estimates, thus referring, implicitly, to theoretical results
in [4]. But in several contexts, for example in clinical research, the follow up times
are usually short, and individual sequences include only a few information on the
random effects; therefore, the choice of the random effect distribution may be im-
portant. As far as selection models are entailed, just to mention a few, [19] used a
Monte Carlo EM algorithm for linear mixed model with Gaussian random effects,
[8] propose a Laplace approximation to overcome the high-dimensional integration
over the distribution of the random effects. Numerical integration techniques, such
as standard or adaptive Gaussian quadrature, can be used as well. In this paper,
we are interested to investigate the association structure between measurement and
dropout processes when the random coefficient distribution is left completely un-
specified, adopting a finite mixture perspective. We consider a bivariate distribution
for the random coefficients that is equal to the product of the marginal distributions
only when the dropout mechanism is ignorable. The structure of the paper follows.
Section 2 discusses a random coefficient based dropout model where the association
between outcomes is modeled through discrete latent effects. Section 3 describes the
proposed ML algorithm. Last section contains concluding remarks.
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2 Random coefficient-based models

Let Yit represent a set of longitudinal measurements recorded on i= 1, . . . ,n subjects
at time t = (1, . . . ,T ), associated to a row vector of p covariates xit = (xit1, . . . ,xit p).
Let us assume that the observed responses yit are realizations of a random variable
with density in the exponential family and canonical parameter, θit . The canonical
parameter is defined as follows:

θit = xTit β +xTit bi (1)

The terms bi, i = 1, . . . ,n, are used to model unobserved individual-specific (time-
invariant) heterogeneity common to each lower-level unit (time) within the same ith
upper-level unit (individual), while β is a p−dimensional vector of fixed regression
parameters. Those effects that vary across individuals are collected in the design
vector zit = (zit1, . . . ,zitm). We denote with Ri the missing data indicator vector,
with generic element defined as Rit = 1 if the ith unit drops out at any point in the
windows (t − 1, t), Rit = 0 otherwise. Using this representation, we are implicitly
assuming a discrete structure for the time to dropout; however the following argu-
ments apply to continuous time survival process as wel. We assume that, once a
person drops out, he or she is out forever (attrition). If the designed completion time
is denoted by T , we will have Ti ≤ T measures for each unit. We may introduce an
explicit model for the dropout mechanism, conditioning on a set of dropout specific
covariates, vi, and the random coefficients in the longitudinal response model:

h(ri|vi,yi,bi) = h(ri|vi,bi) =
Ti

∏
t=1

h(rit |vi,bi) i = 1, . . . ,n (2)

where the corresponding canonical parameter is: φit = vT
it γ + dT

it bi. These models
are usually referred to as shared parameter models, see [21],[22], and are based
on the assumption of conditional independence between the longitudinal response
and the dropout indicator; as it can be easily noticed, they assume a perfect linear
correlation between the latent variables in the two equations. In this framework, the
joint density of the measurements process Yit and the missigness process Rit may be
written as: ∫ [ T

∏
t=1

f (yit |xit ,bi)
Ti

∏
t=1

h(rit |vit ,bi)

]
dG(bi) (3)

where G(·) represents a discrete or a continuous random coefficient distribution.
Here, measurement and missigness processes are assumed to be independent given
the random effects bi; therefore, if any, association is completely accounted for by
this latent structure. Correlated random effects represent a further alternative, see eg
[1]: the unobservable latent characteristics control for potential overdispersion in the
univariate profiles and for association between the measurements and missingness
processes; this structure, however, avoids unit correlation estimates, and represents a
more flexible approach when compared to shared random effects, where conditional
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independence still hold. Let bi = (b1i,b2i) denote a set of subject and outcome spe-
cific random coefficients; then, the joint density of the measurement process Yit and
the missigness process Rit can be factorized as:

∫ [ T

∏
t=1

f (yit |xit ,b1i)
Ti

∏
t=1

h(rit |vit ,b2i)

]
dG(b1i,b2i) (4)

An extension of this association structure between random coefficients in the two
equations may e defined following [5] where a general random effect model is intro-
duced, where common, partially shared and independent (response-specific) random
effects influences the measurement and the dropout processes. While it is common
to assume that random effects follows a Gaussian distribution, this does not usu-
ally lead a tractable form of the integral in eqs (3) and (4). Among others, [20],
[15], [17], show that the choice of the random effect distribution does not have great
impact on parameter estimates, except for extreme cases, such as discrete distribu-
tions. On the same line, [13] show that when all subjects have a relatively large
number of repeated measurements, the effects of a misspecifying the random effect
distribution became minimal for model parameter estimates. However, [18] observe
that the choice of an appropriate random effect distribution is generally difficult for,
at least, three reasons. There is often little information about these unobservables,
thus any distributional assumption is difficult to justify, by looking only at observed
data. When high dimensional random coefficients are considered, the use of a para-
metric multivariate distribution imposing the same shape on every dimension can
be restrictive. A potential dependence of the random effects on unobserved covari-
ates induces heterogeneity that cannot be captured by common parametric assump-
tions. In studies where some subjects have few measurements, ie due to dropout,
the choice of the random coefficient distribution may therefore be important. A fi-
nite mixture approach avoids any unverifiable assumptions upon this distribution,
frequently referred to as the mixing distribution. In this perspective, [18] propose
a semi-parametric shared parameter model to analyze continuous longitudinal re-
sponses while adjusting for non monotone missingness. On the same line, [2] jointly
analyze longitudinal binary responses subject to dropout trough a selection model
with correlated, outcome-specific, random coefficients. Using a finite mixture ap-
proach, the log-likelihood function in equation (4) can be written as follows:

`(·) =
n

∑
i=1

{
K

∑
k=1

f (yi|xi,b1k)h(ri|vi,b2k)πk

}
=

n

∑
i=1

{
K

∑
k=1

f (yi,ri|xi,vi,bk)πk

}
(5)

where πk =Pr(bk)=Pr(b1k,b2k) is the joint probability of locations bk =(b1k,b2k),k=
1, . . . ,K. The use of finite mixture has several significant advantages over paramet-
ric models; for instance, this approach is computationally efficient, and the discrete
nature of the estimate may help classify subjects in components corresponding to
clusters characterized by homogeneous values of random parameters. However, we
may notice that the latent variables, as well as the corresponding number of loca-
tions, considered in the model to account for individual extra-model departures can
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be different when the longitudinal and the missingness processes are considered.
For this reason, according to [3], we propose to consider different number of com-
ponents, locations and/or masses for the latent variables in the two equations. When
compared to previously mentioned proposals, see eg equation (5), this is a more
flexible representation for the random coefficient distribution and, in particular, this
model properly nests a model which describes the dropout as being non informative.
That is, the proposed MNAR model properly nests a MAR countepart, while in case
of equation (5) this is not true. Let us suppose the joint bivariate distribution of the
random effects has the following marginal representation [9]:

P1 = (u1g,π1g) ,g = 1, . . . ,K1 P2 = (u2l ,π2l) , l = 1, . . . ,K2

with π1g = Pr(b1i = b1g), g = 1, . . . ,K1, π2l = Pr(b2i = b2l), l = 1, . . . ,K2. That is,
we associate to each couple of random coefficients, say (b1g,b2l), g = 1, . . . ,K1,
l = 1, . . . ,K2, a mass πgl = Pr(b1i = b1g,b2i = b2l), where we do not restrict to con-
sider the same number of components in each profile. While marginals control for
heterogeneity in the univariate profiles, joint probabilities describe the association
between latent effects in the two submodels. This approach can be related to a stan-
dard finite mixture approach where K = K1×K2 components are used and each of
the K1 locations in the first profile appears in a couple with each of the K2 locations
corresponding to the second profile. Theorem 1 in [6] shows that the elements of
any probability matrix π ∈ Π K1K2 , where the latter represents the set of K1×K2
probability matrices, can be decomposed as:

πgl =
M

∑
h=1

τhπ1g|hπ2l|h (6)

for an appropriate choice of M. Obviously, the following constraints hold:

∑
h

τh = ∑
g

π1g|h = ∑
l

π2l|h = ∑
g

∑
l

πgl = 1

Therefore, the two set of random coefficients b1i and b2i, i= 1, . . . ,n are independent
conditional on belonging to the h-th (upper level) latent class h = 1, . . . ,M. Random
coefficients control for heterogeneity in the univariate profiles, while the hierarchy
of the latent components control for potential dependence between outcome-specific
random coefficients; this somewhat leads to separability of univariate heterogeneity
and bivariate dependence. In some way, the hierarchical structure for πgl resembles
a copula-based model, where dependence between profiles is modeled through a
copula function joining the marginal distributions for the outcome-specific random
coefficients, see [13]. The independence case arises simply when M = 1; in this case,
the dropout mechanism is non ignorable. The dropout probability still depends on
unobserved sources of variation, but these are independent on those influencing the
longitudinal measurements. When M ≥ 2 we have some form of dependence and
we can define different non ignorable dropout mechanisms according to the values
assumed by the parameter M. In this sense, it may be interesting to investigate the
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sensitivity of the results with respect to model assumptions when M moves away
from 1, as for example in [16].

3 ML Parameter Estimation

The data vector is composed by an observable part yi and by unobservables zi =
(zi1, . . . ,ziK) and ζ i = (ζi1, . . . ,ζiM) representing lower and upper level membership
vectors. For fixed K1, K2 and M, we assume zi and ζ i have multinomial distributions,
with probabilities πgl , g= 1, . . . ,K1, l = 1, . . . ,K2 and τh, h= 1, . . . ,M. The complete
data likelihood is given by

Lc(·) =
n

∏
i=1

K1

∏
g=1

K2

∏
l=1

 f (yi,ri | zigl)

[
M

∏
h=1

π1g|hπ2l|hτh

]ζih


zigl

=
n

∏
i=1

K1

∏
g=1

K2

∏
l=1

 Ti

∏
t=1

f (yit | zigl)h(rit | zigl)

[
M

∏
h=1

π1g|hπ2l|hτh

]ζih


zigl

where τh is the prior probability for the h−th upper level latent class, π1g|h and
π2l|h are the conditional probabilities of belonging to the g-th and the l.th lower
level components, conditional on being in the h-th class. We partition the parameter
vector Ψ =

(
Ψ g,Ψ l ,Ψ glh

)
, where Ψ g and Ψ l denote the parameter vectors for the

longitudinal and the dropout process, respectively, while Ψ glh = {(π1g|h,π2l|h),τh}.
By writing figl = f (yi,ri | zigl) = f (yi | zigl)h(ri | zigl), the score function is:

Sc(Ψ g) =
n

∑
i=1

K2

∑
l=1

wigl
∂

∂Ψ g

[
log( figl)+ log(πgl)

]
=

n

∑
i=1

wig
∂

∂Ψ g
[log( fig)]

Sc(Ψ l) =
n

∑
i=1

K1

∑
g=1

wigl
∂

∂Ψ l

[
log( figl)+ log(πgl)

]
=

n

∑
i=1

wil
∂

∂Ψ l
[log(hil)]

Sc(Ψ glh) =
n

∑
i=1

wiglωih|gl
∂

∂Ψ glh

[
log(πg|h)+ log(πl|h)+ log(τh)

]
where fig = f (yi | zigl), hil = f (ri | zigl) and ωih|gl is the posterior probability that the
i−th belongs to the h-th upper level component, given the observed data, the lower
level components and the current parameter estimates Ψ̂

(r)
. Terms wigl represent the

posterior probability of the unit being in the g-th component and the l-th component
in the measurement and dropout profiles, respectively. In this way, we may test for
independence of the two processes, through standard Wald-type or χ2-based statis-
tics; in particular, when the probability of dropout depends on unobserved sources
of variation, eg unobserved heterogeneity, which influences also the longitudinal re-
sponse, then the dropout process is non ignorable. Molemberghs et al.(2007) show
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that for every MNAR model, there is an MAR counterpart that produces exactly
the same fit to observed data. This can be more easily understood if we look at
previous score equations that resemble the score equations for univariate mixture
regression models, representing a potential MAR solution. The ML estimates can
be achieved, conditional on w(r)

igl , in subsequent maximization steps. To speed ud the
EM algorithm, and to ensure identifiability of a two-level latent structure with only
one observation level, we may proceed by discretizing w(r)

igl using a MAP rule, as in
CEM algorithm (condition choice=”C” in the algorithm below), or by drawing the
component indicator ẑ(r)igl from a multinomial distribution using posterior probabili-
ties as in SEM algorithms (condition else below), see [11]. In this case, the last the
score equation resembles the one for a polytomous latent class model. The resulting
EM algorithm is sketched below.

begin
initialize w(0)

igl ,Ψ
(0),ε > 0 repeat

update w(t)
igl Expectation Step

if (choice=”C”)
z(t)igl = 1 ⇐⇒ w(t)

igl = maxr,v w(t)
irv; Classification Step

else
draw z(t)igl with probs given by w(t)

igl ; Stochastic Step

estimate β
(t)
1 , β

(t)
2 , u1, u2 given z(t)igl Maximization Step

estimate π
(t)
g|h,π

(t)
l|h ,τ

(t)
h Maximization Step

until Q(·)(t)−Q(·)(t−1) < ε;
end

Algorithm 1: Pseudo-code of the proposed SEM-CEM algorithm

4 Conclusions

We have defined a random coefficient based dropout model where the association
between the longitudinal and the dropout processes is modeled through discrete
outcome-specific latent effects. A bidimensional representation for the random ef-
fect distribution is used with possibly different numbers of locations in each margin,
and a full association structure connecting each location in a margin to each location
in the other one. The proposed approach may also be used, for example, in clinical
context, where we have only few repeated measurements for subjects. The main ad-
vantage of a more flexible representation for the random effects distribution is that
the general MNAR model properly nests a model where the dropout mechanism is
non informative. This opens to a sensitivity analysis of changes in model parameter
estimates as the number of upper level components, M, moves from 1.
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