ROI analysis of pharmafMRI data: an adaptive
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Abstract Pharmacological fMRI (pharmafMRI) is a new highly innovatitech-
nique utilizing the power of functional Magnetic Resonamemging (fMRI) to
study drug induced modulations of brain activity. FMRI redings are very infor-
mative surrogate measures for brain activity but still vexpensive and therefore
pharmafMRI studies have typically small sample sizes. Tigh ldimensionality
of fMRI data and the arising high complexity requires sewsistatistical analy-
sis in which often dimensionality reductions are cruciak @bnsider Region of
Interest (ROI) analysis and propose an adaptive two-stgjmt) procedure for re-
spectively formulating and testing the fundamental hypsth as to whether the
drug modulates the control brain activity in selected RQie proposed tests are
proved to control the type | error rate and they are optimétims of the predicted
chance of a true positive result at the end of the trial. Pamalysis is performed
by re-expressing the high dimensional domain of power fondnto a lower di-
mensional easily interpretable space which still givesrafdete description of the
power. Based on these results, we show under which circacesteour procedure
outperforms standard single-stage and sequential tvge giacedures focusing on
the small sample sizes typical in pharmafMRI. We also applymethods to ROI
data of a pharmafMRI study.
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1 Introduction

Pharmacological fMRI (pharmafMRI) is an exciting new teichue employing func-
tional Magnetic Resonance Imaging (fMRI) to study brainwétyst under drug ad-
ministration. The so-called Blood Oxygenation Level Degemt (BOLD) fMRI
contrast, often used in pharmafMRI studies, measures ldcald flow changes
known to be associated with changes in brain activity. Whdeoming more es-
tablished, pharmafMRI faces a number of challenges of wikiche are statistical.

FMRI datasets are extremely high dimensional with enornspasial resolution
(=~ 3mn) and moderate temporal resolution 8s). The typical fMRI dataset pro-
duced by a single scanning session consists of BOLD reogsa@ioquired during a
relatively short period of time (few hundreds time pointg)ri around 10 voxels
(3-dimensional volume elements) throughout the brain.darmde such high dimen-
sional datasets it is often appropriate to formulate speyional hypotheses for
the drug action and reduce accordingly the dimension of &te.d’he need for this
type of analysis, which can provide regional summary messaf drug effect, is
particularly acute in the typical pharmafMRI setting, inialindue to the high cost
of fMRI scans only a small number of subjects can be recruited

Region of Interest (ROI) analysis can reduce an fMRI dataseta relatively
small number of ROI response summary measures expressingcdl strength of
treatment effect across the selected brain regions. If thethiefinition of ROl and
the computation of the ROI response measures are cauticostjucted, a statis-
tical analysis based on these ROl measures can potentiig\e high levels of
sensitivity. We wish to go along this path and apply a muitate test assessing the
fundamental null hypothesis as to whether the new compotiimdarest changes
the underlying brain activity in the selected ROI.

In previous work [5], we showed that tests based on a scaleaticombination
of multivariate ROI responses can outperform fully multisée methods, especially
for the typically small sample sizes of fMRI studies. Theide question for the
former tests is the selection of the weights applied to R&poases. In his seminal
contribution O'Brien [6] use equal weights for all coordies while Lauter [3] ex-
tract the weighting vector from the data sums of productsiman Minas et al. [5]
the weights are optimally derived based on prior infornmatiad pilot data.

Here, we develop an adaptive two-stage procedure where ghtireg vector,
initially chosen based on prior information, is optimallglagoted at a subsequent
interim analysis based on the collected first stage data.fifsteand the second
weighting vector are applied to the first and second stagmnses, respectively, to
produce the stage-wise linear combination test statisiasombination function,
combining the test statistics of the two studies, is useetéopm the final analysis.
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Both weighting vectors are optimal in terms of the predefower [7] of this two-
stage test which is analytically proved to control type berate.

Finally, we perform power analysis of the proposed tests @omwler compar-
isons to alternative methods. Note that the performancete$tawith such a high
dimensional domain of the power function can be hard to prtgr We tackle this
problem by proving that the high dimensional power domaim loca re-expressed
into a lower dimensional easily interpretable space whiitlhgives a complete de-
scription of the power. Using these results, our power aigishows clearly those
circumstances where our procedure outperforms standayléstage and two-stage
sequential procedures. We also apply our methods to ROlafagpharmafMRI
study in which our tests are shown to be far more powerful thadatter methods.

2 Formulation

In this section we formally introduce our problem. We startdiving a brief de-
scription of the methods for extracting ROI measures frorRfldata.

ROI measures are typically extracted from mass univarietee@l Linear Mod-
els (GLMs) applied to the preprocessed series of 3-dim fMiRdde at voxel-by-
voxel resolutions (see figure 1). Estimates of the treatrafatt in each voxel of
each subject are first extracted from these GLMs and themgedracross the pre-
defined, based on either brain anatomy or brain function, k@& coordinates of
the produced multivariate outcomes correspond to reptahem measures of the
treatment effect within each ROI of each subject.

In our methods, we assume that these ROI responses of tbjects partici-
pating in stagg of the study are independent multivariate Normal randorabégs

inNNK(uvz)v i:1727'--anj7 j:1727 (1)

with meanu and covariance matriX. Normality is typically an acceptable assump-
tion for modeling ROI linear measures in fMRI [2].
We summarise the ROI responses using scalar linear cormdrisat

ROI definition Mass Univariate GLM Voxel-by-voxel f-effect estimates ROI fi-effect estimates

Fig. 1 Typical steps of fMRI data analysis producing a multivai&0Ol outcome. The prepro-
cessed series of fMRI images are modeled at voxel-by-veesblution using mass univariate
GLMs. Suitable estimates of parameter valugy €xpressing the treatment effect in each voxel
are first extracted from the GLM and then averaged acrossréuzfined ROI.



4 Giorgos Minas, John A.D. Aston, Thomas E. Nichols and N&sellard
K
Lii = > WikYjik (2)
k=1

wherewjy is the non-zero weight applied to theth ROl responsek = 1, ..., K, of
stagej. Using these linear combinations, we wish to test the globllhypothesis
of no treatment effect across all Rl : 4 = 0 (=(0,0,...,0)") against the two-
sided alternativély : u # 0.

The stage-wise test statistics in our design are the linearbinationz andt
statistics

Zi=—lm, Ti=—5 (3)

for = known or unknown, respectively. Herg?, Lj, sJ2 are the variance, sample
mean and sample variance of the linear combindtignespectively. The two-sided
p values,pj, j = 1,2, may be obtained from theor t statistics in(3). We use a
two-stage design which instructs the investigators to:

1. stopthe trial (after the first stage) and rejdgif p, < a, or stop the trial without
rejection ifp; > ay,
2. continue to the second stageif < p; < a, and rejecHg if p;p, <c.

Here, the Fisher’s product combination function [[ip,, is used for the final anal-
ysis. We also consider alternative functions including ltheerse Normal combi-
nation function [4]. Under this design, thgpe | error rate is controlled at the
nominala level if the rejection probability of the two-stagert test,

0
pr(py<aq)+ /a “or(p1p2 < ¢| p1)g(pr)dps, o(-) density ofpy,  (4)
1

is under the null hypothestdy equal toa.

We target on maximizing thgower of the above two-stage tests, i.e. the rejection
probability in (4) underHs, with respect to the weighting vectovsg ,w», while
controlling the type | error rate. In other words, we wish taifthe optimal direction
in which the projection of the treatment effect vector proggioptimal power.

3 Methods

Here, we develop the proposed adaptive two-stage testmgegure. We start by
providing the optimal weighting vector for the two-stag@andt tests described
above.

Theorem 1. Under the assumption ifil), the power of the above two stage tests,
i.e. the rejection probability if4) under H, is maximized with respect to wand
w, if and only if the latter are both proportional t@ = >~ p.



Adaptive global testing for fMRI ROI data 5

The optimal weighting vectow is unknown and therefore we use the available
information at the planning stage (prior) and at the intesiage (posterior) to select
W1, Wa.

Prior informationDg elicited from previous studies and experts clinical opinio
is used to inform the following Normal and Inverse-Wishanibps for u and Z,
respectively,

(M| Z,Do) ~ Nk (Mo, Z/Mo), (| Do) ~ Wk (vo,St)- (5)

Here,my represents a prior estimate far, ng the number of observationg is
based on; andy, S respectively represent the degrees of freedom and scatexmat
of the inverse-Wishart prior.

Under this Bayesian model, the posterior distributiongegithe prior informa-
tion Dg and the first stage data, have the same form as the prior distributions

(M| Z.Do,y1) ~ Nk (Mg, Z/(No+n1)), (Z]Do,y1)~IWikxk (Vo+n,S;t). (6)
where the posterior estimates

n n nony ,— _
= % S = So+(n1—1)3/1+ﬁ (Yi—mo) (y1—mo)"  (7)
can be thought as “weighted averages” of the prior and fiagfesestimates qf and
2, respectively.

We wish to optimally select the weighting vectors of the twages. Here opti-
mality is defined in terms of the predictive power of the t&edictive power ex-
pressesthe chance, given the data so far, that the planned testisjeb when the
trial is completed”. GivenDy, the predictive poweB, 1 andB; 1 for the two-stage
andt tests, respectively, are defined as

pr( py < ay | Do)+ pr(p; € [a1, 00, P1p2 < ¢ Do) (8)

and if we continue to the second stage, the predictive p8ygandB; , given the
prior informationDg and the first stage daya are defined as

pr(p.p2 < ¢|Do,y1), 9)
for p; corresponding to either theort statistics in(3), respectively.

Theorem 2. Under the assumptiond) and (6), the first and second stage predic-
tive power of the z test,.B and B,, are maximized with respect to,yw», respec-
tively, if the latter are proportional to wi = 5~ 1mg and w, » = = ~1my, respectively.

Further, for largevy, i.e. vo — o, the weighting vectorsy 1 = %1rrb andw o =
qlml maximise the predictive power functioBgg andB; 1.

We can now describe the proposed adaptive two-stagelt tests. These fol-
low the two-stage design described earlier with the firstsembnd stage weighting
vectors of the stage-wiseandt statistics being equal to the vectavs;,w,» and
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W 1, W 2, respectively. These tests are power optimal based on trezisal infor-
mation. We can also prove that they control the type | err.ra

4 Power analysis

The design variables that need to be considered for the sinaf/the power func-
tion of the abovez andt tests are: (i) the stopping boundar@msg a1 andc, (ii) the
sample sizesg, ny andn, (andvp), (iii) the parametergt andZ and (iv) the prior
estimate(siny (andSy). While the variables in (i) and (ii) are scalar, those i) éind
(iv) are high dimensionaRK x RX*K x RK (xRK><K)). Without any dimensionality
reduction, it would be challenging to get a full picture angblain the power per-
formance of our tests. However, we can prove that forzttest, (iii) and (iv) can be
replaced by: (a) the Mahalanobis distarigeZ ~111)Y/2 of the nullNk (0, ) to the
alternativeNg (i, X) distribution expressing the strength of the treatmentetied
(b) the angled between the transformed optimal weighting vedioe /2y and
the transformed selected first stage weighting vewiar="2> ~1/2my (both transfor-
mations correspond to left multiplication By/2). Considering théetest the angular
distance in (b) is replaced by one expressed in terms ofydagirpretable vectors
in [0,71/2]K x [0,11/2]K x RK. In figure 2, we illustrate how these results can be
used to compare our procedure to standard testing procdtwe small sample
sizes, the power of the single-stagtest is larger (smaller) than the power of the

power

10 15 20 25 30 35 40 45 50 55 60

Fig. 2 Simulation-based approximation of the pow@&t,of the single-stage (green—) and adap-
tive (blue —) linear combinationtest as well as the HotellingE? test (red - -) plotted against the
total sample sizer. The angled betweenio and the transformed selected weighting vectoed
W, 1 of the single-stagetest and the first stage of the adaptivtest, respectively, are taken to be
equal to 0 (x), 15° (@), 30’ (W), 45° (V), 60° (x), 75° (+) and 90 (x). Further,ag =1, a; = 0.01,
c=0.0087 @ =0.05),K =15,ng =5,vp =4, f =ny/ny =0.5andD; = 3 1255 12 =,
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adaptive test if the selected weighting vector is relatively closst@ht) to the op-
timal weighting vector. For relatively large sample siz@scontrast to the single
stage test, the adaptivéest reaches high power levels even for first stage weighting
vector orthogonalf = 90°) to the optimal. For increasingr and all other design
variables remaining fixed, the ange for which the power of Hotelling'd 2 test
(applicable only font > K) is equal to the power of thetests, is decreasing.

4.1 Application to a pharmafMRI study

We use the sample mean and sample covariance matrix (seeljabf ROI data
extracted from a GlaxoSmithKline pharmafMRI study-€ 11,n; = 13) to perform
power comparisons. As we can see in table 1, effect sizesrdiffross ROl and
generally high correlations are observed. Further, ther gstimates presented are
fairly poor resulting in anglé betweend andw 1 equal to 67. However, even
for these prior estimates and such small sample sizes thgieslatest might be
considered as sufficiently powergél & 0.82). This is in contrast to standard single
stage tests, such as Hotelling¥, OLS [6], SS and PC [3] tests B> = 0.30,
BoLs = 0.13, Bss= 0.13, Bpc = 0.14) as well as their corresponding sequential
two-stage versiong3g, s = 0.10, BSs= 0.09, 5. = 0.10, sequential Hotellings?
test not applicable font = 13) which give very low power values. Note that for

Tablel Means (line 1), variances (line 3) and correlations (uppangle of matrix in lines 5- 15)
and the corresponding prior estimates (lines 2, 4 and loxaargle of matrix in lines 5- 15) of
ROI data of the samplenf = 13) of a GSK pharmafMRI study. The ROI arénterior Cingulate
(AC), Atlas Amygdala (A), Caudate (C), Dorsolateral Pratal Cortex (DLPFC), Globus Pallidus
(GP),Insula (1), Orbitofrontal cortex (OFC), Putamen (F§ubstantia Nigra (SA), Thalamus (T),
Ventral Striatum (VS)

ROIJAC A C DLPFC GP I OFC P SA T VS
Ik |-0.01 006 _0.08 —0.08 —0.14 —0.02 008 —0.06 0.10 _0.10 —0.13
Mok | 0 010 010 010 015 0 015 0 010 010 015
o, | 011 011 003 005 011 008 013 015 010 011 010
S« | 015 010 002 010 010 010 015 015 010 010 Q10
AC | 1 070 08/ 088 073 089 066 081 026 095 Q70
070 1 Q54 061 072 Q77 065 068 059 068 066
c |070 050 1 089 Q72 087 047 080 027 090 074
DLFPC| 0.70 070 070 1 Q71 076 Q73 Q77 027 087 062
GP |070 070 070 070 1 086 051 090 054 Q70 090
I |070 070 070 070 Q70 1 Q45 085 046 086 084
050 050 050 070 050 050 1 Q44 009 065 030
070 070 Q70 070 Q70 Q70 050 1 Q49 082 089
13 SA | 050 070 030 050 050 050 050 030 1 Q30 055
070 070 070 070 070 Q70 050 070 050 1 Q74
070 050 070 070 Q70 Q70 050 070 050 Q70 1
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improved prior estimates (smaller angles) the power of thegtvet test can be
increased further.

5 Discussion

The formulation of specific regional hypotheses for drugoacand the associated
dimensionality reductions are crucial for further eststtninent of pharmafMRI. As
we illustrate in our methods, ROI analysis combined withtivatiate methods can
be successfully used to answer the fundamental question wbdther the drug
modulates the brain activity over the regions of greatetsrast for a particular
study. We show that reduction of ROI responses to a scakadicombination may
substantially increase sensitivity compared to fully rivaltiate methods on ROI re-
sponses, without any cost in terms of specificity. For thelfaeduction, we propose
deriving the weights of the linear combination by explaitithe available prior in-
formation and allowing for data dependent adaptation ahterim analysis. These
weights are optimal in terms of the predictive power givenakailable information
at each selection time. Further, we show how the high dinoeasipower func-
tion domain space can be reduced to a lower dimensionayéatglpretable space
which allows us to show clearly under which circumstancesitiiprovement over
single stage and sequential designs is achieved. We firfaky that our methods
can outperform standard single stage and sequential &ge shultivariate tests in
a pharmafMRI study.
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