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Abstract The accurate medical diagnostic of a disease condition is fundamental
for a correct medical decision. Disease screening programs are based, in general, in
diagnostic tests which provide a binary response: a subject is classified as positive,
if the test result is above a given threshold, and negative, otherwise. Therefore, false
positive and false negative classifications can be generated. The performance of test
can be evaluated by ROC curves which defined, for a given threshold, the compro-
mise between Sensitivity and Specificity, i.e., the True and False Positive fractions.
In this work, we address the problem of comparing two diagnostic systems where
the corresponding ROC curves cross each other. A methodology is developed pro-
viding a graphical display that identifies the regions where one curve is superior to
the other, with the corresponding Sensitivity and Specificity regions.

1 Introduction

The primary step for the treatment of a disease is its detection. Thus, accurate medi-
cal diagnostic of a disease condition is fundamental, specially in the case where the
detection of the disease in its early stages can improve the success of possible treat-
ments. Therefore, the disease has to be correctly identified, in general, through the
available information obtained from diagnostic tests. In particular, screening pop-
ulations in order to detect in its early stages diseases as breast cancer, colo-rectal
cancer, PKU (phenilketonuria), AIDS, Pap smear and so many more, have become
a widespread practice in most health systems. These tests are applied in a large
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scale, with a positive cost benefit relation and, if possible, should be non invasive.
Thus, through these widespread screening tests, positive results signal patients to
be followed with medical diagnostic. Thus, screening can be viewed as diagnostic
test and, in this sense, approached by statistical modeling. There are diagnostic tests
that produce a binary result, positive or negative, and so, the subject has or does not
have the disease. For instance, the diagnostic of genetic diseases is done by the pres-
ence or absence of a specific gene, thus producing a simple Yes or No response. In
this work, a continuous or ordinal response is considered and, in general, a thresh-
old is used to classify cases as positive, if above the given threshold, and negative,
otherwise. The question to be answered is how to set this threshold so that misclas-
sification is minimized, i.e., positive cases classified as negative and negative cases
classified as positive and, in the presence of two alternative diagnostic tests, how to
determine the one that performs better.

2 Classification

2.1 Classification for binary tests

In the case of a binary response, the variable D, represents the subject status, and X
the result of the diagnostic test,

D =

{
1 disease
0 non−disease X =

{
1 positive for disease
0 negative for disease

Therefore, there are four classification possibilities for a given test result, which
are presented in Table 1.

Table 1 Classification results

D = 0 D = 1
X = 0 True negative False negative
X = 1 False positive True positive

Thus, according to the test results, the False Positive FPF , the True Positive
T PF , True Negative T NF and False Negative FNF can be defined,

FPF = P[X = 1|D = 0] T NF = P[X = 0|D = 0]

T PF = P[X = 1|D = 1] FNF = P[X = 0|D = 1]

where the pair (FPF,T PF) provides the probabilities of the errors,

T PF +FNF = 1 T NF +FPF = 1
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These fractions are, in general, presented as Sensitivity (T PF) and Specificity (1−
FPF). Sensitivity can be perceived as the capacity of the diagnostic test to detect
the disease in a given subject, whereas Specificity can be interpreted as the capacity
of the test to exclude individuals without the disease. Therefore, for any diagnostic
test the aim is to have a high Sensitivity and a high Specificity.

2.2 Classification for non-binary tests

The previous section presented the classification of test results in the case of a bi-
nary response. However, there are many tests where the response is not binary, and
can be presented on a continuous or ordinal scale. Examples of such tests measured
on a continuous scale are the biomarkers for cancer such as PSA and CA 125, the
diagnostic of kidney disease through the level of creatine, the presence of a heart
condition based on the total cholesterol level or the readings of blood pressure;
on the other hand, a ordinal scale can be used in the classification of radiologic im-
ages (present, possible, absent), or in the classification of clinical symptoms (severe,
moderate, mild, not present).

Without loss of generality, it will be considered that larger values of X are indica-
tive of the presence of the disease. In order to classify the results, a dichotomous de-
cision rule will be used based on a given threshold. This rule underlies the medical
decision, which supports the decision to treat or not to treat a particular patient. For
instance, in the case of the biomarker for prostate cancer the threshold is 4.0 ng/mL
of serum PSA and for total cholesterol is 190 mg/dL. Fixing a giving threshold has
to take into consideration the consequences of the decision. In the case of AIDS,
wrongly classifying an individual as diseased or failing to detect that the individual
has the disease, has serious implications, for the individual in the first place, but also
for the society at large. Furthermore, other factors must be taken into consideration
such as the costs of the test and the treatment of the disease in a more advanced
status, the severity of the disease and the characteristics of treatment (for instance,
surgery required or not).

The evaluation of the performance of diagnostic tests, the definition of a thresh-
old, has been studied quite a long time and firstly in other areas such as signal detec-
tion theory and psychology. It should be mentioned the pioneering works of Fechner
(1801–1887), Thurstone (1887–1955) Blackwell (1940) and later the contributions
of [10, 11, 7, 6, 2, 9].

2.3 The ROC curve

For a continuous decision variable X , as the threshold varies, different pairs of T PF
and FPF are defined. The projection of these pairs on a plane defines a curve, de-
noted as Receiver Operating Characteristic (ROC) Curve. Let us consider as c the
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threshold, or cut-off value, which classifies the patient as Positive if X ≥ c and Nega-
tive if X < c. Therefore, the True (T PF) and False (FPF) Positive Fractions depend
on the threshold c,

T PF(c) = P(X ≥ c|D = 1) FPF(c) = P(X ≥ c|D = 0)

For a given c, each pair (FPF,T PF) defines a point on the ROC curve which can
be defined as

ROC(.) = {(FPF(c),T PF(c)) ,c ∈ (−∞,+∞)} .

The most usual performance measure is the area under the curve AUC,

AUC =
∫ +∞

−∞

T PF(c)dFPF(c).

Figure 2.3 presents the relation between the threshold value c and the true (T PF) and
false positive (FPF) fractions for the distribution of diseased and non-diseased cases
and the corresponding ROC curve. Dashed lines correspond to diagnostic systems
with different discrimination between diseased and non-diseased subjects.
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Fig. 1 T PF and FPF and ROC curves.

For a perfect test the curve will pass on the upper left corner since the distribution
of diseased and non-diseased cases will be completely disjoint, defining an area
equal to unity; for a non informative test, the distributions of diseased and non-
diseased cases will be identical, and the curve will coincide with the diagonal. Thus,
it is possible to compare two diagnostic systems, even using different measurement
scales, since the ROC curve transforms both tests to a common reference scale.
Moreover, the threshold can be determined in such a way to minimize both errors,
False Positive and False Negative fractions, or some function of these fractions that
takes into consideration decision costs.
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The ROC can be defined as

ROC(t) = T PF(FPF−1(t))

where, for a given threshold c, t = FPF(c), with t ∈ (0,1). For two diagnostic sys-
tems, in which test A is uniformly better than test B (please refer to Figure ), then

ROCA(t)≥ ROCB(t) ∀t ∈ (0,1),

as well as
AUCA ≥ AUCB.

3 Global and partial comparison

The usual performance measure for ROC curves is the area under the curve (AUC).
When comparing two diagnostic systems, based on the AUC index, the best system,
the one which better discriminates positive from negative results, corresponds to the
system that exhibits greater AUC. This is true, provided that the two curves do not
cross each other. If the curves cross each other, this may not be the case.

In order to compare two diagnostic systems, it is necessary to determine the
regions, on the ROC plane, where one system outperforms the other and vice-versa.
For that purpose, we propose a methodology [1] based on sampling lines which can
estimate the areas under the curves as well as, the regions where one curve is above
the other.

Figure 2 shows, for illustration purpose, an empirical ROC curve, the line seg-
ments that define this curve, as well as three sampling lines that cross the empirical
ROC curve. The set of n+1 points, (xi,yi), defining the ROC curve are joined by n
line segments ri, given by,

ri+1(s) = yi+1 +mi+1(s− xi+1) where mi+1 =
yi+1− yi

xi+1− xi
for xi 6= xi+1. (1)

where mi+1 is the slope of the line segment ri+1. The sampling lines, with origin
(sr, tr), corresponding to (1,0) on the ROC plane, with variable slope, are defined as

lk(s) = tR−mk(s− sR) where mk = tan
(
(K +1− k)π

2(K +1)

)
for k = 1, . . . ,K,s≤ sR.

(2)
where K+2 is the number of sampling lines. The sampling lines define a set of trian-
gles, the sides of which are the distance from the reference point to the intersection
point, given by

(sk, tk) = (
tR− yi +mixi +mksR

mk +mi
, tR−mk(sk− sR)), (3)
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whose distance from the reference point is given by

dk =
√

(sk− sR)2 +(tk− tR)2 (4)

and, thus, the area of each triangle is given by

Ak =
1
2

dkdk−1 sin
(

π

2(K +1)

)
for k = 1, . . . ,K +1. (5)

Fig. 2 Empirical ROC curve and sampling lines [1].

The number of sampling lines is arbitrarily fixed, but as its number increases, the
better will be the estimation of the area [1]. Figure 3 shows an example of two em-
pirical ROC curves that cross each other and how the sampling lines can be used for
the determination of the area between the two curves. Moreover, this figure shows
the region of the ROC space where one curve is superior to the other and vice versa.
In the adjacent graph, the horizontal axis shows the angles from the sampling lines
(for this example, 100 lines have been used) and in the vertical axis, the areas be-
tween the two curves are represented. Positive points are the points where curve 1 is
better than curve 2. Thus, this approach provides extension and location measures
for the comparison of two curves, identifying and quantifying the regions where the
differences between the curves occur, and its relation with Sensitivity and Speci-
ficity.

In order to evaluate if there are significant differences between the two areas un-
der the curve and to establish, as well, confidence intervals, a permutation test [4]
is used. Based on the areas along the ROC space, calculated by equation , the dif-
ferences between the curves, in terms of areas, can be calculated. It should be noted
that the differences of the areas between the curves are exchangeable. Considering
T S as the summation of the differences between the areas, a large number of sam-
ples can be generated by exchanging the areas, through the reassignment of the plus
and minus sign to the areas. Thus, it is possible to have the overall distribution of T S
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Fig. 3 Area between ROC curves, extension and location [1].

and, therefore, to perform a statistical test. The distribution of the distances of the
intersection point to the reference point can be generated by bootstrapping, which
can be perceived as a ROC curve bootstrap distribution, allowing the construction
of the percentile bootstrap confidence intervals. Thus, it is possible to calculate con-
fidence intervals for the location and extension measures, which define confidence
bands as ilustrated in Figure 4.

Fig. 4 ROC curves comparison and confidence bands for extension and location [1].
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4 Conclusions

In this work a methodology to compare ROC curves that cross each other has been
presented, where a graphical display identifies the regions where one curve is supe-
rior to the other, with the corresponding Sensitivity and Specificity regions. Thus,
the proposed approach avoids the need of partial comparison of areas [12, 3], pro-
viding a global evaluation along the ROC space. This approach, based on bootstrap,
is a non parametric alternative for the comparison of curves that cross each other,
regardless the number of crossings.
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