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Abstract Adaptive Markov chain Monte Carlo methods have been appliedsuccess-
fully to many Bayesian statistical problems. These algorithms are specifically de-
signed to automatically adjust the proposal parameters to match the shape of the
posterior distribution during the simulation process. In this paper we first introduce
a new adaptive Markov chain Monte Carlo algorithm where the posterior distribu-
tion is approximated by a mixture of multivariate t-distributions whose parameters
are updated at each iteration. Then we extend the proposed sampler by allowing
multiple interacting chains to run in parallel. We compare the prosed algorithms in
a simulation experiment showing the superiority of the interacting scheme.
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1 Introduction

In recent years, Markov chain Monte Carlo algorithms (MCMC)have revealed their
enormous potential in solving the difficult problem of simulating from the posterior
distribution arising in complex stochastic models. Thanksto the ability of the simu-
lation methods to propose an efficient solution to the inferential problem, Bayesian
statistics has become very popular. Sometimes MCMC methodsshow poor perfor-
mances when high dimensional and multimodal target distributions are involved.
In fact, even well designed algorithms can find difficulties in approximating poste-
rior distributions in a reasonable computational time. Adaptive sampling methods
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have been proposed to overcome these problems: they use previous draws of the
simulation process to tailor the proposal distribution on the features of the target
distribution. Adaptive samplers have been proposed in different contexts: Doucet
al. [6] extend the population Monte Carlo algorithm of Doucet al. [5] and introduce
mixture of Gaussians as general proposal distributions where the mixture param-
eters are fitted using the past history of the particles. In the MCMC context the
seminal work of Haarioet al. [7] on adaptive random walk Metropolis algorithms
and the most famous work of Haarioet al. [8] that introduces adaptation into an
independent Metropolis-Hastings algorithm have been followed by a vast literature;
for example Haarioet al. [9], Atchadé and Rosenthal [3], Atchadé and Fort [4], An-
drieu and Moulines [1], see also the recent review by Andrieuand Thoms [2] and
references therein.
In this paper we propose a mixture of adaptive independent Metropolis kernels. The
aim of the method is to overcome the main drawback of the Metropolis-type al-
gorithms that combine fast and good local exploration properties with sub-optimal
scaling factors, especially when high dimensional multimodal distributions are in-
volved. The mixture of Independent Metropolis-Hastings kernels can improve the
ability of the sampler to explore different regions of the state space.
The second major contribution of the paper consists in extending the adaptive sam-
pling algorithm by considering multiple interacting chains with the aim of reducing
the initial learning time. Parallel MCMC algorithms have been proposed by Jasraet
al. [10] to deal with the problem of simulating from high dimensional multimodal
target distributions. In its basic version these methods consist in running different
chains in parallel allowing interactions among them that improve the global explo-
ration of the target. The use of multiple interacting chainsin conjunction with the
flexibility of the proposal distribution guarantees a rapidmixing of the chain and
reduces the computational time.

2 Adaptive MCMC

Suppose we are interested on sampling from a target distribution π having support
in X ⊂ R

d , known up to a normalizing constant. The proposed adaptive-MCMC
algorithm is based on a Independent Metropolis Mixture proposal kernel having the
following general form, at iterationi:

q
(

x,Θ̃ ,Θi
)

= λTd
(

x|Θ̃
)

+(1−λ )
K

∑
k=1

ωk,iTd
(

x|Θk,i
)

(1)

whereTd (x|Θi) is the probability density of ad−variate Student-t distribution with
parametersΘi = (µi,Σi,νi) , ωk,i are the mixture weights satisfying the constraints
ωk,i > 0,∀ 1≤ k ≤ K, and∑K

k=1 ωk,i = 1. λ ∈ (0,1) is the weight associated to the
non-adapted distributionTd

(

x|Θ̃
)

which parameters are fixed during iterations. The
rationale behind the presence of the fixed component is twofold: first it guarantees
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Fig. 1 Autocorrelation function of the posterior draws for the parameterµ1 of the mixture model
defined in equation (2). The adaptive-MCMC output (solid line) is compared with that of the par-
allel version (dotted line).

the convergence of the algorithm even in the case where the proposal parameter
space is unbounded, see Andrieu and Moulines [1] and Haarioet al. [8]. Second,
it is very useful in exploring multimodal posterior distributions when the number
of modes of the proposal is smaller than that of the target distribution. The form
of the mixture representation is updated at each iterationi when a new observation
becomes available from the simulation process. To adapt theproposal mixture pa-
rameters we minimize the Kullback-Leibler divergence fromthe target distribution
using the stochastic approximation algorithm of Robbins and Monro [11].
As a second step, the proposed single chain adaptive MCMC is extended by al-
lowing interactions between multiple chains running in parallel. In particular, we

consider a population ofN chainsX ( j) =
{

x( j)
i

}

i∈N

, j = 1,2, . . . ,N, with the j−th

chain having transition kernel equal toq( j)
i

(

x|Θ̃ ,Θi
)

as in equation (1). To speed up
the learning mechanism of the posterior parameters we consider three types of pop-
ulation moves as described in Jasraet al. [10]: mutation, exchange and crossover.

3 Numerical example

In this section we carry out a comparison between the proposed single chain adap-
tive MCMC algorithm and its parallel interacting extension. We simulate a sample
of 1,000 observations from the following bivariate mixture of two Normal distribu-
tions
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1
3
N2 (µ1,Σ1)+

2
3
N2 (µ2,Σ2) (2)

with µ1 = (0,0)T, µ2 = (10,10)T, andΣ1 = Σ2 = 0.1I2, and we consider 35,000
iterations and the same proposal distributions for both algorithms.

In Figure 1 the autocorrelation function is plotted with 50 lags for the first com-
ponent of the bivariate Metroposlis-Hastings chain. It is evident that the autocorre-
lation function of the interacting scheme MCMC algorithm issubstantially lower as
compared to that of the single chain.
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