Parallel Adaptive Markov chain Monte Carlo
with applications
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Abstract Adaptive Markov chain Monte Carlo methods have been appliedess-
fully to many Bayesian statistical problems. These alhong are specifically de-
signed to automatically adjust the proposal parametersatchrthe shape of the
posterior distribution during the simulation process.His {paper we first introduce
a new adaptive Markov chain Monte Carlo algorithm where thstgrior distribu-
tion is approximated by a mixture of multivariate t-distriltons whose parameters
are updated at each iteration. Then we extend the proposegleraby allowing
multiple interacting chains to run in parallel. We compdre prosed algorithms in
a simulation experiment showing the superiority of theriatéing scheme.

Key words. Markov chain Monte Carlo, adaptive Monte Carlo, Bayesiaalysis,
mixture model.

1 Introduction

In recent years, Markov chain Monte Carlo algorithms (MCN@ye revealed their
enormous potential in solving the difficult problem of siratithg from the posterior
distribution arising in complex stochastic models. Thatakthe ability of the simu-
lation methods to propose an efficient solution to the inféaéproblem, Bayesian
statistics has become very popular. Sometimes MCMC metslools poor perfor-
mances when high dimensional and multimodal target digiohs are involved.
In fact, even well designed algorithms can find difficultieapproximating poste-
rior distributions in a reasonable computational time. ptilee sampling methods
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have been proposed to overcome these problems: they udeyseraws of the
simulation process to tailor the proposal distribution be teatures of the target
distribution. Adaptive samplers have been proposed irefit contexts: Douet
al. [6] extend the population Monte Carlo algorithm of Daatal. [5] and introduce
mixture of Gaussians as general proposal distributionsevtiee mixture param-
eters are fitted using the past history of the particles. MNMCMC context the
seminal work of Haarit al. [7] on adaptive random walk Metropolis algorithms
and the most famous work of Haaré al. [8] that introduces adaptation into an
independent Metropolis-Hastings algorithm have beeofad by a vast literature;
for example Haari@t al. [9], Atchadé and Rosenthal [3], Atchadé and Fort [4], An-
drieu and Moulines [1], see also the recent review by Andaied Thoms [2] and
references therein.

In this paper we propose a mixture of adaptive independeiriddelis kernels. The
aim of the method is to overcome the main drawback of the Npelis-type al-
gorithms that combine fast and good local exploration prigewith sub-optimal
scaling factors, especially when high dimensional multiadaistributions are in-
volved. The mixture of Independent Metropolis-Hastingelks can improve the
ability of the sampler to explore different regions of thatstspace.

The second major contribution of the paper consists in ektgrthe adaptive sam-
pling algorithm by considering multiple interacting chsimith the aim of reducing
the initial learning time. Parallel MCMC algorithms havesbgroposed by Jasea
al. [10] to deal with the problem of simulating from high dimemsal multimodal
target distributions. In its basic version these methodssisb in running different
chains in parallel allowing interactions among them thatriave the global explo-
ration of the target. The use of multiple interacting chamsonjunction with the
flexibility of the proposal distribution guarantees a rapitking of the chain and
reduces the computational time.

2 Adaptive MCMC

Suppose we are interested on sampling from a target digtibm having support
in 2~ ¢ RY, known up to a normalizing constant. The proposed adapiiGéAC
algorithm is based on a Independent Metropolis Mixture psapkernel having the
following general form, at iteration

K
q(%0,0) =AT4(x0) +(1-2) ¥ kiTa(X6ki) 1)
&

whereTq (x|&;) is the probability density of d—variate Student-t distribution with
parameter®; = (L, %, Vi) , ax; are the mixture weights satisfying the constraints
Wi >0,V1I<k<K, andzE:laki =1.A €(0,1) is the weight associated to the
non-adapted distributiony (x|@) which parameters are fixed during iterations. The
rationale behind the presence of the fixed component is tdiofiost it guarantees
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Fig. 1 Autocorrelation function of the posterior draws for thegraeteru; of the mixture model
defined in equation (2). The adaptive-MCMC output (solie)irs compared with that of the par-
allel version (dotted line).

the convergence of the algorithm even in the case where thgopal parameter
space is unbounded, see Andrieu and Moulines [1] and Hatab [8]. Second,
it is very useful in exploring multimodal posterior distuittons when the number
of modes of the proposal is smaller than that of the targetiligion. The form
of the mixture representation is updated at each iteratigimen a new observation
becomes available from the simulation process. To adagiribigosal mixture pa-
rameters we minimize the Kullback-Leibler divergence fritra target distribution
using the stochastic approximation algorithm of Robbirg sionro [11].

As a second step, the proposed single chain adaptive MCM&ténded by al-
lowing interactions between multiple chains running inghlat. In particular, we

consider a population dfl chainsX()) = {xi(j)}_ " i=1,2,....N, with the j—th
le

chain having transition kernel equalqﬁ) (x|é79|) as in equation (1). To speed up
the learning mechanism of the posterior parameters we @entiree types of pop-
ulation moves as described in Jasral. [10]: mutation, exchange and crossover.

3 Numerical example

In this section we carry out a comparison between the prapsisgle chain adap-
tive MCMC algorithm and its parallel interacting extensidve simulate a sample
of 1,000 observations from the following bivariate mixture obtiNormal distribu-
tions
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with p; = (O, 07, Mo = (10, 10)", andz; = %, = 0.11I,, and we consider 3500

iterations and the same proposal distributions for botbréitlgms.

In Figure 1 the autocorrelation function is plotted with &@¢ for the first com-

ponent of the bivariate Metroposlis-Hastings chain. Iniglent that the autocorre-
lation function of the interacting scheme MCMC algorithnsistantially lower as
compared to that of the single chain.
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