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Abstract This short paper discusses the role that normalized inverse-Gaussian priors
assume in certain continuous-time models. These describe the time evolution of
infinitely-many frequencies, together with a measure of their heterogeneity, based
on an infinite normalized inverse-Gaussian sample, whose individuals are subject to
random genetic drift and mutation in a randomly evolving environment.
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1 Normalized inverse-Gaussian priors

Normalized inverse-Gaussian priors are special cases of normalized generalized
gamma processes. These are discrete random probability measures with representa-
tion

µ = ∑∞
i=1 PiδXi (1)

where the locations {Xi}i≥1 are iid samples from a non atomic probability measure
P0 defined on some Polish space X, the weights {Pi, i ∈ N} are obtained by means
of the normalization

Pi = Ji

/
∑∞

k=1 Jk, (2)

and {Ji, i ∈N} are the points of a generalized gamma process ([1]). This is obtained
from a Poisson random process on [0,∞) with mean intensity

λ (ds) =
1

Γ (1−α)
exp(−τs)s−(1+α) ds, s≥ 0,

with 0 < α < 1 and τ ≥ 0, so that if N(A) is the number of Ji’s which fall in A ∈
B([0,∞)), then N(A) is Poisson distributed with mean λ (A). [ 5] showed that a
generalized gamma random measure defined via (1)-(2), where β = aτα/α with
a > 0 and τ > 0, induces a random partition of Gibbs-type ([ 3]). This can also be
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generated by means of the urn scheme

P{Xn+1 ∈ ·|X1, . . . ,Xn} = g0(n,Kn)P0(·)+g1(n,Kn)∑Kn
j=1(n j−α)δX∗j (·) (3)

where X∗1 , . . . ,X∗Kn
are the Kn distinct values observed in X1, . . . ,Xn with absolute

frequencies n1, . . . ,nKn , with coefficients g0(n,Kn) and g1(n,Kn) given by

g0(n,k) =
α ∑n

i=0

(
n
i

)
(−1)iβ i/αΓ (k +1− i/α;β )

n∑n−1
i=0

(
n−1

i

)
(−1)iβ i/αΓ (k− i/α;β )

g1(n,k) =
∑n

i=0

(
n
i

)
(−1)iβ i/αΓ (k− i/α;β )

n∑n−1
i=0

(
n−1

i

)
(−1)iβ i/αΓ (k− i/α;β )

(4)

where Γ (c;x) denotes the upper incomplete gamma function

Γ (c;x) =
∫ ∞

x
sc−1 exp(−s)ds. (5)

Special cases of a generalized gamma process with parameters (β ,α) are the Dirich-
let process ([2]), obtained by letting τ = 1 and α → 0, the normalized stable process
([4]), obtained by setting β = 0, and the normalized inverse-Gaussian process, ob-
tained by setting α = 1/2.

In the next section, which reviews the results contained in [7], we construct and
analyze a continuous-time model which is closely related with the class of normal-
ized inverse-Gaussian priors.

2 Results

It is well known that a first order approximation of the weights g0(n,k) and g1(n,k)
in (4) is g0(n,k) ≈ 1/n and g1(n,k) ≈ αk/n. The next proposition determines a
second order approximation of the weights, which is crucial for the derivation of the
subsequent results.

Proposition 1. Let g0(n,k) and g1(n,k) be as above. When α = 1/2 we have

g0(n,k) = αk/n+β/(snn)+o(n−1), g1(n,k) = 1/n−β/(snn2)+o(n−2)

where sn = k/nα and β = aτα/α .

Consider now a population evolving in time, such that marginally at each time point
the population is a normalized inverse-Gaussian sample of size n, i.e. generated
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from (3) with weights as in Proposition 1. Every transition consists in substituting
a uniformly selected coordinate with a sample from (3), which leaves the marginals
unchanged due to the exchangeability of the sample. The next results describes the
dynamic species heterogeneity in the population as the sample size increase, where
“⇒” denotes convergence in distribution and CB(A) the space of continuous func-
tions from A to B.

Theorem 1. Let {Kn(m),m∈N0} denote the Markov chain which tracks the number
of distinct types in the above described dynamic sample, and define {K̃n(t), t ≥ 0}
to be such that K̃n(t) = Kn((n3/2t))/nα . Let also {St , t ≥ 0} be a diffusion process
driven by the stochastic differential equation

dSt = (β/St)dt +
√

St dBt , St ≥ 0, (6)

where Bt is a standard Brownian motion. If K̃n(0)⇒ S0, then

{K̃n(t), t ≥ 0}⇒{ St , t ≥ 0} in C[0,∞)([0,∞)) as n→ ∞.

Furthermore, the points 0 and ∞ are respectively an entrance and a natural bound-
ary for St .

Hence the heterogeneity in the sample, once normalized and time-rescaled, is
described for large n by a diffusion process which has strictly positive sample paths.
Furthermore, (6) can be seen as a particular instance of a continuous-time analog of
the notion of α-diversity, introduced by [ 6] for Poisson-Kingman models (see [ 7]
for details).

The following result joins the above heterogeneity dynamics, with those of the
random frequencies. Consider the closure of the infinite ordered simplex

∇∞ =
{

z = (z1,z2, . . .) : z1 ≥ z2 ≥ . . .≥ 0, ∑∞
i=1 zi ≤ 1

}
,

and define the second order differential operator

A =
β
s

∂
∂ s

+
1
2

s
∂ 2

∂ s2 +
1
2

∞

∑
i, j=1

zi(δi j− z j)
∂ 2

∂ zi∂ z j
− 1

2

∞

∑
i=1

(
β
s

zi +α
)

∂
∂ zi

. (7)

The domain D(A ) of the operator (7) is taken to be the sub-algebra of C0([0,∞)×
∇∞) generated by f = f0× f1, with f0 ∈D(A0), f1 ∈D(A1), and where

D(A0) ={ f ∈C0([0,∞))∩C2((0,∞)) : A0 f ∈C0([0,∞))},

D(A1) =
{

sub-algebra of C(∇∞) generated by 1,∑∞
i=1 z2

i ,∑∞
i=1 z3

i , . . .
}

,

with A0 given by the first two terms in (7). The following theorem states that (7)
characterizes a Feller diffusion which almost surely has paths in C[0,∞)×∇∞

([0,∞)).

Theorem 2. Let A be (7) with domain D(A ). The closure in C0([0,∞)×∇∞) of A
generates a Feller semigroup {T (t)} on C0([0,∞)×∇∞). For every ν ∈P([0,∞)×
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∇∞), there exists a strong Markov process Z(·) corresponding to {T (t)} with initial
distribution ν and sample paths in C[0,∞)×∇∞

([0,∞)) with probability one.

The last two terms of (7) describe the time evolution of the frequencies of infinitely-
many types, where zi(δi j− z j) are the covariance terms and −[(β/s)zi +α] defines
the structure of the drift terms, driven by mutation forces. The positive coefficient
θt = β/St varies in time, and is driven by the diffusion (6).

The connection between (7) and normalized inverse-Gaussian priors is given by
the following result.

Theorem 3. Let X (n)(·) be the Xn-valued process described at the beginning of the
section, with transition occurring at exponential times with mean one, let w(X (n)(t))
denote the vector of decreasingly ordered frequencies of the distinct types in X (n) at
time t, whose total amount is Kn(t), and let Z(·) be as in Theorem 2. If the initial
distributions converge, then

[
Kn(n3/2t)/nα ,w(X (n)(n2t/2))

]
⇒ Z(t)

in C[0,∞)×∇∞
([0,∞)).

The previous theorem states that the diffusion process characterized in Theorem
2 can be constructed as the limit in distribution of the sequence (Kn(t),w(X (n)(t))),
once appropriately transformed and rescaled, whose components represent the het-
erogeneity and the frequencies of the different types in a sample of size n from a
normalized inverse-Gaussian prior.
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