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Abstract Measures of financial volatility exhibit clustering and persistence and can
be jointly modeled as the element by element product of a vector of conditionally
autoregressive scale factors and a multivariate i.i.d. innovation process (vector Mul-
tiplicative Error Model – vMEM). Since similar profiles are shared across measures,
a restricted vMEM decomposes the conditional expected volatility into the sum of a
common (persistent) component and a vector of measure specific components. With
data on absolute returns, realized kernel volatility and daily range for the Dow Jones
index, we show that indeed such a common component exists with the desired prop-
erties. The transitory components happen to have different features across volatility
measures.

Key words: Volatility, (vector) Multiplicative Error Models, Long/Short Run De-
composition, GARCH, GMM, Penalized Estimation.

1 Introduction

In financial time series analysis, a centerpiece is dedicated to volatility measurement
and modeling/forecasting. The dynamic interdependence among several indicators
of volatility (absolute returns, daily range and realized volatility) was performed
in [6] as a stack of univariate MEMs. Extending this analysis, the idea that a gain
in estimation efficiency and a more reliable interpretation of the significance of the
links can be obtained with a vector MEM (or vMEM) approach is pursued by [3, 4].

We motivate our new model, labeled Additive Common Component vMEM or
ACC-vMEM, starting from the matching patterns exhibited by several indicators of
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volatility, translating the idea of similar high persistence or long–term evolution in
each series into a common component. Relative to the vMEM, the essential feature
of the new model is the structure of the conditional mean, that is decomposed into
the sum of a common (persistent) component plus a vector of idiosyncratic individ-
ual components. The main advantage is an enhanced interpretation of the dynamics:
scenario analysis can be built on different assumptions relative to the evolution of
the two components; relatively parsimonious formulations can capture fairly rich
dynamic patterns, retaining, as with any vMEM, the ability of multistep forecasts.
The model, whose reduced form can be traced to a more complex vMEM formula-
tion with constrained parameters, has connections with the Composite–MEM con-
sidered in [2], whose characteristics have proved to adequately capture the dynamics
of realized volatilities of single assets. The seminal idea, however, should be traced
back to the univariate GARCH model proposed in [7], in which the dynamics of the
conditional variance is decomposed into two additive components, one labeled as
permanent in view of its higher persistence, and the other one as transitory.

Given the semiparametric specification of the model, inferences can be obtained
via GMM (Generalized Method of Moments), based on the conditional mean and
variance expressions following from the model definition, according to [4] and ex-
tended by [5] to a penalized version to accommodate empirical applications possibly
affected by identification issues and/or highly collinear effects.

We estimate our model on three indicators of volatility (absolute returns, real-
ized volatility and daily range) extracting the common persistent component from
data on the Dow Jones index. The results show that the common dynamics is well
supported by the data and captures a high degree of the total behavior of the series;
the transitory components show little persistence; finally, in estimating conditional
expectations, we find the highest accuracy for realized volatility, followed by the
daily range and by absolute returns.

2 The vMEM and the Additive Common Component vMEM

Let {xxxt} a discrete time process with components defined on [0,+∞)K . In the vMEM
(vector Multiplicative Error Model [3, 4]), xxxt is structured as

xxxt = µµµ t � εεε t (1)

where, conditionally on the information Ft−1, µµµ t is deterministic,

µµµ t = µ(θθθ ,Ft−1) (2)

and εεε t is stochastic, with pdf (probability density function) defined over a [0,+∞)K

support and such that
εεε t |Ft−1 ∼ D+(1,ΣΣΣ). (3)

The previous assumptions on µµµ t and εεε t give
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E(xxxt |Ft−1) = µµµ t V (xxxt |Ft−1) = µµµ t µµµ
′
t �ΣΣΣ = diag(µµµ t)ΣΣΣ diag(µµµ t), (4)

where the latter is a positive definite matrix by construction.
Assuming that xxxt is mean-stationary with E(xxxt) =E(µµµ t) = µµµ , µµµ t can be specified

as

µµµ t = µµµ +ξξξ t (5)

ξξξ t = βββ
∗
1ξξξ t−1 +ααα1vvvt−1 + γγγ1vvv(−)t−1 (6)

vvvt = xxxt −µµµ t vvv(−)t = xxx(−)t −µµµ t/2, (7)

where the vector xxx(−)t aims at capturing asymmetric effects associated with the sign
of an observed variable and is usually structured as x(−)t, j = xt, jI

(−)
t, j , where I(−)t, j de-

notes the indicator of a negative value of the signed variable (see [4] for more
details). Further lags could be added, but we do not consider them here. From a
practical point of view, the µµµ t defined by (5)-(6)-(7) constitutes a trivial reparame-
terization of the usual µµµ t -equation in [4]. However, it has the merit of representing
the dynamics of the process being driven by a zero mean, stationary component,
ξξξ t , that moves around the unconditional average level µµµ . Depending on the context,
further meaningful components, similar to ξξξ t , can be added and/or a time–varying
rather than a fixed level µµµ , can be taken into account.

In this spirit, one can note as non-negative financial time series tend to show
frequently very similar patterns over the sample of observation (see the Data panel
of Figure 1 for an example), conveying the idea of a single underlying driving force.
Accordingly, we propose a new formulation of the vMEM by changing the structure
of µµµ t as follows: the fixed µµµ is replaced by a time-varying component driven by a
scalar common factor, ηt ; ξξξ t is (ideally) structured as a vector of specific elements,
i.e. each ξt, j depends on its own past values only. The implicit assumption is that
the common component is able to capture adequately the main part of the cross-
dependence. More explicitly, this new Additive Common Component vMEM (or
ACC-vMEM) has µµµ t defined by

µµµ t = µµµ +ψψψηt (8)

ξξξ t = βββ
(ξ )∗
1 ξξξ t−1 +ααα

(ξ )
1 vvvt−1 + γγγ

(ξ )
1 vvv(−)t−1 (9)

ηt = β
(η)∗
1 ηt−1 +ααα

(η)′
1 vvvt−1 + γγγ

(η)′
1 vvv(−)t−1 (10)

together with (7) and, in order to make the model identified, ψψψ ′1 = K. As detailed
in [5], this ACC-vMEM has connections with other models: for K = 1 it collapses
into the Composite–MEM by [2] that, at the time, has close similarities with the
component GARCH of [7]; for ααα

(η)
1 = γγγ

(η)
1 = 000 it degenerates into a vMEM without

common components; in general, it can be seen as the reduced form of a more
complex vMEM formulation.
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3 Empirical Application: Common Dynamics in Volatility

We adopt the ACC-vMEM for modeling the joint dynamics of absolute returns
(|ret|), realized kernel volatility (rkv) and high-low range (hl) for the DJ30 (Dow
Jones Industrials) index in the period February 2001 – February 2009 (T = 2009
observations). Realized kernel volatilities are computed from tick by tick data
according to [1] and taken from the Oxford Man Institute (OMI) Realized Li-
brary (http://realized.oxford-man.ox.ac.uk/), that uses data from
Reuters DataScope Tick History. Returns and daily ranges are computed using the
daily highs and lows downloaded from Datastream. All measures are expressed in
annualized percentage terms.

The aim of the analysis is to illustrate the separate contribution, to the overall dy-
namics, of the common and measure–specific transitory components, investigating
their relative importance across the three indicators. In order to gain some insight
into the changes provided by the Common Component, different models are com-
pared: an ACC-vMEM in which γγγ

(η)
1 = 000 and all ααα

(ξ )
1 , γγγ

(ξ )
1 , βββ

(ξ )
1 coefficient matri-

ces are diagonal (label c-diag); a model obtained adding to c-diag the asymmetric
effects in the permanent component and a full ααα

(ξ )
1 matrix (label c-full); two cor-

responding vMEM’s, labeled diag and full respectively, obtained from the previous
ones by removing the common component. All models are estimated by penalized
GMM (cf. [5]) using relatively small penalties.

The time series, shown in the top panel of figure (1), highlight the strongly similar
pattern of the long term evolution of the three indicators, with an initial period of
(relatively) high volatility, followed by a long period of low volatility (between 2004
and the first half of 2007), in turn followed by a progressive increase up to the burst
at the end of 2008. Around this long term pattern, rkv appears considerably less
noisy than |ret|, with hl in an intermediate position.

The parameter estimates (Table 1) show a high persistence of the common com-
ponent throughout, substantially in line with the univariate analyses in [2] and [7].
The main contribution to this component is provided by the rkv innovations (α(η)

2,1 is
highly significant), and this seems consistent with the smoother evolution of this in-
dicator relative to the remaining ones. The impact of the |ret| and hl innovations on
the common component is by far less important and loss its significance in the most
complex ACC-vMEM. Judging on the size of the common component’s loadings, ηt
is usually lowered when transferring into rkv (ψ2 significantly smaller than 1 for all
indices), while it is amplified when entering into |ret| and hl (ψ1, ψ3 significantly
higher than 1). The estimated parameters also point to the fact that the persistent
component captures an important part of the persistence of the specific series: while
the vMEMs have a fairly high βββ

(ξ )∗
1 ’s coefficients, the corresponding ACC mod-

els show a sharp decrease in their value. Note also as the ααα
(ξ )
1 estimates tend to

change between the vMEM and the ACC–vMEM with a corresponding structure of
the short term component. Moreover, a comparison of the last two columns reveals
as the asymmetric effects seem to have a larger impact on the permanent than on the
short term component.
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Table 1 Parameter estimates (est.) and corresponding standard erors (s.e.) for different specifi-
cations of the vMEM for the DJ30 ticker (20010201 – 20090227): with all diagonal coefficient
matrices (diag), with full ααα(ξ ) (full), Common Component with all diagonal coefficient matrices
in the short term component (c-diag), Common Component with full ααα(ξ ) (c-full).

diag full c-diag c-full
parameter est. s.e. est. s.e. est. s.e. est. s.e.

µ1 12.0038 0.8291 11.7688 0.7347 11.9113 1.1366 13.4386 1.1123
µ2 11.5170 0.5942 11.4914 0.6260 11.7555 1.0109 13.0744 0.9961
µ3 13.0198 0.5708 12.9887 0.7146 13.2438 1.1651 14.8029 1.1328

β
(ξ )∗
1,1,1 0.9832 0.0034 0.9653 0.0054 0.4171 0.1220 0.3869 0.0827

α
(ξ )
1,1,1 0.0075 0.0084 -0.0131 0.0117 -0.1182 0.0189 -0.0827 0.0302

α
(ξ )
1,2,1 0.3197 0.0426 0.3926 0.0936

α
(ξ )
1,3,1 0.0270 0.0245 -0.2191 0.0656

γ
(ξ )
1,1,1 0.0775 0.0104 0.0408 0.0092 0.0681 0.0215 0.0065 0.0207

β
(ξ )∗
2,2,1 0.9701 0.0045 0.9554 0.0063 0.4413 0.0914 0.4591 0.0813

α
(ξ )
2,1,1 0.0128 0.0090 -0.0086 0.0120

α
(ξ )
2,2,1 0.2287 0.0140 0.3036 0.0278 0.0516 0.0240 0.1464 0.0387

α
(ξ )
2,3,1 0.0638 0.0208 0.0233 0.0271

γ
(ξ )
2,2,1 0.0746 0.0077 0.0385 0.0078 0.0662 0.0101 0.0053 0.0122

β
(ξ )∗
3,3,1 0.9767 0.0030 0.9625 0.0050 0.4416 0.0773 0.2791 0.0819

α
(ξ )
3,1,1 0.0053 0.0093 -0.0289 0.0182

α
(ξ )
3,2,1 0.2988 0.0305 0.1921 0.0578

α
(ξ )
3,3,1 0.0487 0.0082 0.0399 0.0218 -0.1274 0.0165 -0.1464 0.0412

γ
(ξ )
3,3,1 0.0903 0.0072 0.0467 0.0069 0.0914 0.0136 0.0364 0.0144
ψ1 1.0172 0.0139 1.0217 0.0092
ψ2 0.9213 0.0115 0.9139 0.0071
ψ3 1.0615 0.0112 1.0644 0.0071

β
(η)∗
1 0.9789 0.0056 0.9823 0.0026

α
(η)
1,1 0.0161 0.0087 -0.0154 0.0117

α
(η)
2,1 0.2859 0.0321 0.1717 0.0307

α
(η)
3,1 0.0470 0.0201 -0.0036 0.0261

γ
(η)
1,1 0.0669 0.0163

γ
(η)
2,1 -0.0860 0.0319

γ
(η)
3,1 0.1005 0.0361
σ1 0.8333 0.8295 0.8192 0.7991
σ2 0.2436 0.2439 0.2447 0.2330
σ3 0.3994 0.4004 0.4006 0.3849

R1,2 0.1847 0.2435 0.2418 0.2190
R1,3 0.7284 0.7322 0.7317 0.7228
R2,3 0.5678 0.6179 0.6209 0.6024
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Table 2 Ljung-Box statistics for different specifications of the vMEM for the DJ30 ticker
(20010201 – 20090227): with all diagonal coefficient matrices (diag), with full ααα(ξ ) (full), Com-
mon Component with all diagonal coefficient matrices in the short term component (c-diag), Com-
mon Component with full ααα(ξ ) (c-full).

lag diag full c-diag c-full
12 9.0624E-28 1.5444E-09 3.0464E-06 1.0366E-02
22 4.8892E-18 3.0500E-05 4.9878E-03 2.2769E-01
32 1.9827E-13 5.8010E-04 4.4802E-02 5.1617E-01

Table 3 Diebold-Mariano statistics between couples of different specifications of the vMEM for
the DJ30 ticker (20010201 – 20090227): with all diagonal coefficient matrices (diag), with full
ααα(ξ ) (full), Common Component with all diagonal coefficient matrices in the short term component
(c-diag), Common Component with full ααα(ξ ) (c-full).

|ret| rkv hl
diag full c-diag diag full c-diag diag full c-diag

full -0.897 0.358 -1.677
c-diag 0.126 1.737 -0.259 -0.986 -1.192 0.599
c-full 0.905 2.190 1.356 -2.810 -3.303 -3.174 -1.319 0.229 -0.207

The medium and bottom panels of Figure 1 illustrate the persistent–transitory
decomposition for the three indicators. The persistent components appear fairly
smooth, while the transitory components contribute much less to the overall con-
ditional expected volatility, with very little persistence (cf. the βββ

(ξ )∗
1 coefficient).

The estimated error term oscillates around one, but is very skewed for absolute re-
turns and fairly symmetrical with occasional spikes (jumps?) for realized kernels.
It provides further evidence of the conditional expectation being more accurately
estimated for rkv (values close to one) relative to hl and, even more so, to |ret|.

The improved capability of the ACC-vMEM to capture the dynamics of these se-
ries is shown in Table 2, where it is clear that a full ααα

(ξ )
1 improves the situation over

the corresponding diagonal case. The Common Component version (last column)
improves matters even more, bringing longer lags into nonsignificant territory.

The results of a Diebold Mariano test (normally distributed test statistics reported
in Table 3) show some significant results (negative values indicate that the row
model is better than the column model) favoring the Common Component mod-
els, especially for the realized kernel volatility, for which the full ACC-vMEM is
significantly uniformly better than the other models.

4 Conclusions

Starting from the stylized fact of a high degree of common movements and similar
persistence exhibited by time series of several volatility measures (absolute returns,
realized kernels and daily range), we suggest a specification of a constrained vMEM
([3], and [4]), forcing its dynamics to follow the evolution of a common component
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(which all volatility measures contribute to) and of measure–specific components
characterized by a lesser degree of persistence. The model can be estimated in a
GMM framework on the basis of the expressions for the conditional moments (ex-
pectations and variances) of the variables of interest.

In our empirical application the common component is determined mainly by
the realized kernel and has a high persistence coefficient as expected; the measure–
specific transitory components show a more diversified pattern with a substantial
absence of persistence. As expected, the accuracy of the estimated conditional ex-
pectation, as measured by the estimated multiplicative errors, is the best for the
realized kernels, followed by the daily range and it is much lower for the absolute
returns. We notice some occasional spikes in the estimated error, which probably
deserve some further attention as occasional bursts in volatility.
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