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Abstract In this paper we extend the pairwise consistency of the Bayesian proce-
dure to the entire class of linear models when the number of regressors grows as the
sample size grows, and it is seen that for establishing consistency both the prior over
the model parameters and the prior over the models play now an important role. We
will show that commonly used Bayesian procedures with non—fully Bayes priors for
models and for model parameters are inconsistent, and that fully Bayes versions of
these priors correct this undesirable behavior.
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1 Introduction

In some applications of the regression models the number of regressors grows as the
sample size grows; for instance, clustering is an interesting model selection problem
where the number of models increases as the sample size increases. The question
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is whether consistency of the Bayesian variable selection procedure holds in this
context. A partial answer to this question was given in Moreno et al. (2010), where
consistency of the Bayes factor (pairwise consistency) for nested models when the
number of regressor k increases with rate k = O(nb), b <1, was considered. It was
there proved that any pair of nested regression models for which the Bayes factor has
an asymptotic approximation equivalent to the BIC (Schwarz, 1978), is a consistent
procedure for b < 1, but it is not for b = 1. Note that the BIC is a valid approximation
for a wide class of prior distributions on the model parameters. It was also seen that
the Bayes factor for the intrinsic priors considerably improves the BIC asymptotic
behavior.

Nevertheless, variable selection in regression is carried out in the entire class of
normal regression models 91 that contains nested and also nonnested models, and
we wonder if the pairwise consistency when k = O(nb ), b < 1, can be extended to
the class 21. We shall show here that the answer to this question depends not only
on the Bayes factor but also on the prior over the class of models 1. In fact, some
commonly used Bayes factors and priors over models in the case of finite k, provide
inconsistent Bayesian variable selection procedures in the class 9t as k grows with
n.

2 Background

Let Y represents an observable random variable and X, ..., X a potential set of ex-
planatory regressors related through the normal linear model

Y=0p+oX]i+...+ 04X+ &, & NN(O,sz),

where the vector of regression coefficients a1 = (0, @y, ..., 04)’ and the variance
error sz are unknown. For a dataset (y,X), we denote the full model as M; with
sampling normal distribution N, (y|X; | Q1 ,(szln)7 where y is a vector of dimen-
sion n of independent observations of Y and X;;1 an x (k+ 1) design matrix of full
rank that involves k regressors. The intercept only model N, (y|tol,, 051,) will be
denoted as M.

The class of regression models defined by all possible subsets of regressors of
{X,...,X;} will be denoted as 9 the number of which is 2¥. A generic sampling
model in the class containing j of the potential k regressors with sampling density
Nu(¥IX 41 B ,G]?In), where ;1 = (Bo,Bi, ..., B;) is an unknown vector of regres-

sion coefficients, X is the n x (j+ 1) design submatrix of Xy, and G]2 is the

k
unknown variance error, will be denoted as M;. There are < > such a M; models

J
and this subclass is denoted as 901;. It is clear that 90t = UIJ‘»:()S)J? ;. The developments

in the paper will be clear using this somewhat ambiguous, but simpler, notation.
Given a dataset (y,X) coming from an unknown model M7 in 91, and the priors
for models and model parameters {7(f;,0;|M;)n(M;),M; € M}, the model pos-
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terior probability of model M;, which is used as the variable selector, is formally
given by

) _ Bjo(y,X) n(M;)/m(Mo) '
Pr(M;ly,X) = T Tor,con Boly. X) 70y /7 (00)" M;cm,
My#My

where the Bayes factor Bjo(y,X) is

B flvn(Y|Xjﬁj»o-]21n)n(ﬁj70j)dﬁjd6j
I Nu(ylow,031,) (0, Go)dotod o

BJO(Y7X)

The advantage of the above expression for the model posterior probability is that
all the Bayes factors in it involves nested models. This approach is called encom-
passing from below variable selection (Girdn et al., 2006). We coud also use the
encompassing from above approach in which all the Bayes factors are of the form
B (y,X) (Casella and Moreno 2006).

For the dataset (y,X) the expressions of the Bayes factors for comparing My
versus M for the g—priors with g = n, B g, for the mixture of g—priors with mixing
distribution an inverse Gamma(g|1,/2,n/2), B%ix, and for the intrinsic prior, B%’ , are
given by

(14n)=i=1/2

Bio= GG nzge M
e _ (n/2)1? /w (L+g)n V2 ) ( n
P = L(1/2) Jo (1+g#e)m 8 XP( 5 dg, 2

where the integral on R does not have an explicit expression and needs numerical
integration on (0,00), and

/2 sin/ @ (n+ (j+2)sin? @)*—i=1/2
(nBjo+ (j+2)sin® g)(n=1)/2

where the integral does not have an explicit expression and needs numerical inte-
gration on (0, w/2). These three Bayes factors depend on the data through the same
statistic 4o, which is the ratio of the square sum of the residuals of model M; and

My, that is

y(I-H))y
Y (=311,
where H; is the hat matrix associated to X;.

The prior over the class of models we consider are known as the independent
Bernoulli prior and are given by

) A
Blf =2 (+2) do, ()
T 0

®)

Bjo =

n(M;|0)=6/(1-0)7 0<6<1,
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where 0 is an unknown hyperparameter the meaning of which is the probability
that a regressor is included in the model. The rationale for this prior is that all the
regressors have a priori the same probability of inclusion. Note that when 6 = 1/2
the uniform prior is obtained. If we assume a uniform distribution for 6, and the
class M is decomposed as N = U’;-:OS)? j» a hierarchical uniform prior for the models
is obtained, that is

7Y (M;) = 7Y (M;|om;) 2" ()

L : K1
= [ 6/(1-06)do = —_—
/0 (1-6) (]) k+ 1

This means that conditional on the class 9; the model prior 77V (M;|901;) is uni-
form, and the marginal 7V () of the classes {9, j=0,1,...,k} is also uniform.

3 Consistency in the class 9t when k = O(n”) for b < 1

Let us define the random variable X; = j/k, j =0, ..., k, that takes values in [0,1] and
indicates the proportion of regressors with respect to k in the class 9;, j =0,...,k,
and having the probability distribution given by

Pr{X; = i] = Pr(M; |k, y,X), j=0,... k.

Definition 1. A Bayesian procedure is star consistent when sampling from the null
Mo =My, if

lim Pr[X; <e]=1, [My).

n—oo
Theorem 1. If we sample from My and the rate of growing of the number of regres-
sors k is k =0(n”) for any b < 1, we have that

(i) the Bayesian variable selection procedures given by the Bayes factors By, B%i"
and B% and the hierarchical uniform prior over models {x''V (M), M; € M},
are consistent in the class 9.

(ii) Further, if the prior over models is the independent Bernoulli m(M;|0), M; € O,
the Bayesian procedure for By, is consistent for b < 1/2, inconsistent for b =
1/2, and star consistent for b > 1/2. The Bayesian procedures for B%ix and B%’
are only star consistent

Theorem 2. Assuming that lim,_... n/j =r > 1, that is k = 0(n), we have that:

(i) The Bayes factor Bjq satisfies

. . 0, [M()],
Jim Bjo = {0, M.
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(ii) The Bayes factor B%ix is such that
. 0, [Mo],
lim Bjg™ = 0, i 8j0 < Suix(r), [M;],
oo, if 8jo > Smix(r), [M]],
where

r

Ouin(r) = (1 -

(iii) The Bayes factor B% satisfies

1) (e r)t/=1) 1,

0, [Mo]
lim Bjf = {0, if 8j0 < §ip(r),[M;],
oo, if 8jo > 1p(r), [M]],
where 1
e
orp(r) =

(r+)=0/r

Part (i) of this theorem means that when j = O(n) the Bayes factor for the
g—prior with g = n asymptotically always chooses the null model, regardless the
model from which we are sampling. Therefore, in the rest of this section we rule it
out.

Parts (ii) and (iii) of this theorem means that for both Bayes factors B%ix and B%’
there are small regions of alternative models around the null for which inconsistency
holds. However, we can show that the inconsistency region of the former contains
the inconsistency region of the latter so that Bi-g improves the asymptotic behavior

of B%ix, the more so for values of r near 1.

Lemma 1. The following properties hold:

(i) The inconsistency region of the Bayes factor for the intrinsic priors B% is strictly
contained in the inconsistency region of the Bayes factor for the mixture of
g—priors B%”‘.

(ii) In particular, for r =1 the Bayes factor B%i" is inconsistent under any alternative

model, while the B% is consistent for 8jo > 1/log2 — 1.

Theorem 3. Assuming that the potential number of regressors k satisfies that lim,,_,e
n/k =s > 1, and the hierarchical uniform prior for models

1 (k\!
EHU(Mj):k+1<j> , M;eMm,

is used, the Bayesian variable selection procedures for either the Bayes factors B’}’{i"

or Bﬁ) , M; € O, are consistent when sampling from M.
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4 Concluding remarks

When the potential number of regressors k grows at a rate O(n”) for 0 < b < 1, we
have extended the pairwise consistency of Bayesian variable selection procedures
to the consistency in the entire class of regression models 9t = u’;zlzm,-. In this
setting, the consistency of the posterior model probabilities depends not only on the
Bayes factor but also on the prior over the class of models 27.

The analyses have been carried out for three popular Bayes factors for model
selection, which are based on the g—prior for g = n, on a mixture of g—priors and
on the intrinsic priors; and the priors over the class of models: the well-known
parametric independent Bernoulli {7/5(M|0),0 < 6 < 1}, and a mixture of them,
the hierarchical uniform prior 77V (M), M € 9.

Different conclusions are drawn when the rate of growth of  is k = O(n”) with
b < 1, and when the rate is k = O(n). In the former setting the conditions to ensure
the consistency of the Bayesian procedure are less stringent than in the later setting.
A summary of the conclusions on the consistency of the Bayesian procedures when
sampling from My and k = O(n”) is given in Table 1.

k=0(n") Bjo B%”‘ and B;‘S
(M|0) U (M) n(M|0) 71U (M)
b<1/2 Consistent Consistent |Star Consistent|Consistent

b=1/2 Inconsistent | Consistent |Star Consistent|Consistent
1/2 < b < 1|Star Consistent| Consistent |Star Consistent|Consistent
b=1 does not apply |does not apply| Inconsistent |Consistent

Table 1 Consistency of the Bayesian procedures when sampling from M, as a function of the
Bayes factors and model prior.

A first conclusion we draw from Table 1 is that when sampling from M, and
the prior over models is 77V (M), a fully-Bayes hierarchical uniform prior, the
Bayesian procedures for the Bayes factors Bjo,BY,", and Bl are consistent for
b < 1, but for the non—fully Bayes prior over models 7(M|0), 0 < 6 < 1, the
Bayesian procedure for B g is inconsistent for b = 1/2 while the other two are start
inconsistent. For b = 1 the Bayes factor B jp has to be ruled out of the inference and
also the non—fully Bayes w(M|6), 0 < 6 < 1. A second conclusion is that as far as
consistency is concerned, the hierarchal uniform prior outperforms the independent
Bernoulli prior, and consequently the uniform prior on all models.

When sampling from an alternative model My # My and b = 1, the Bayes factors
are not consistent but there is a small region of alternative models around the null
for which inconsistency holds. However, we have shown that the pairwise incon-
sistency region of the Bayes factor for the mixture of the g—priors strictly contains
the inconsistency region of the Bayes factor for the intrinsic priors. In particular, we
showed that when lim,,_..n/k = 1 the Bayes factor for the mixture of the g—priors
is inconsistent under any alternative model.



On consistency of Bayesian variable selection procedures 7

The asymptotic analysis seems to support the conclusion that when the number
of regressors grows with the sample size the Bayesian variable selection procedure
based on intrinsic priors is preferred to those based on the mixture of g—priors.

Further, the bad asymptotic behavior of the non—fully Bayes Bayesian procedures
we have considered has been corrected by considering a fully Bayes version of them.
This conclusion is in agreement with that obtained by Scott and Berger (2010) who
analyzed the empirical Bayes approach to estimating the hyperparameter 6 of the
independent Bernoulli prior for finite sample sizes.
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