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Abstract In the presence of prior information on an unknown parameter of a statis-
tical model, Bayesian and frequentist estimates based on the same observed data do
not coincide. However it is well known that, in many standard parametric problems,
their discrepancy tends to be reduced as the sample size increases. In this paper we
consider a measure of discrepancy, Dn, between a frequentist and a Bayesian point
estimator and we study its predictive distribution. In some specific examples we an-
alyze the main characteristics of this predictive distribution for increasing sample
sizes. We also consider the use of the predictive density of Dn for the assessment of
a prior distribution informativeness. Some explicit results are given for the normal
model.
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1 Introduction

Bayesian methods offer the theoretical framework for combining experimental data
and pre-experimental information on an unknown parameter, that is formalized by
a prior probability distribution. In the presence of prior information, frequentist and
Bayesian procedures, such as point or interval estimates based on the same ob-
served sample, do not coincide. However, in many standard parametric problems,
the discrepancy between frequentist and Bayesian procedures tends to disappear as
the sample size increases. This is typically shown in most of introductory books on
Bayesian inference (see, among others, [1]).

Let us consider the estimation problem for the expected value θ of a normal
distribution. Given n observations from i.i.d. normal random variables, the standard
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Bayesian estimate of θ is a linear combination of the sampling mean, x̄n, and of a
prior guess on θ , µA, i.e. ωnx̄n +(1−ωn)µA, where ωn tends to one as n diverges.
Therefore, for a sufficiently large sample size, the sample mean provides a good
approximation of the Bayesian estimate.

In this paper, we are interested in analysing a measure of discrepancy between
two competing estimators. This measure is random before observing the data. In
Section 2, we introduce a specific measure of discrepancy, Dn, between a frequen-
tist and a Bayesian estimator and in Section 2.1 we derive its explicit expression, its
predictive cumulative distribution function (cdf) and its expected value for the nor-
mal model with conjugate priors. After briefly discussing the asymptotic behaviour
of Dn, in Section 2.2 we focus on a fixed sample size, optimal with respect to a given
criterion, and we assess the informativeness of the prior by evaluating Dn.

2 A discrepancy between estimators

Let Xn = (X1,X2, . . . ,Xn) be a random sample from a probability distribution
fn(·|θ), where θ is an unknown real-valued parameter that belongs to the param-
eter space, Θ ⊆ R. Let xn = (x1,x2, . . . ,xn) be an observed sample, πA(·) the prior
density function of θ , fn(xn|θ) the likelihood function and πA(θ |xn) the posterior
distribution. We will refer to πA as to the analysis-prior. It models pre-experimental
knowledge/uncertainty on θ taken into account in posterior analysis.

We denote a Bayesian estimator of θ as θ̂B(Xn), whereas θ̂F(Xn) is a generic
classical estimator. Let Dn(Xn) be a measure of discrepancy between θ̂B and θ̂F .
Specifically, we consider the standard squared difference between estimators, i.e.

Dn(Xn) = [θ̂B(Xn)− θ̂F(Xn)]2.

Before observing the data, θ̂B, θ̂F and Dn are random variables (functions of Xn).
For instance, in the following we consider the posterior expectation of the parameter
θ , E(θ |Xn) =

∫
Θ

θπ(θ |xn)dθ , as θ̂B, and the maximum likelihood estimator (MLE)
as θ̂F , although the methodology could be extended to other estimators. We want
to evaluate the probability of observing a small/large discrepancy between θ̂B and
θ̂F . As for any other pre-posterior Bayesian analysis, to this purpose two alterna-
tive distributions for the data can be used. The conditional approach prescribes the
use of the sampling distribution fn(·|θ), with θ = µD, a “design value” for the un-
known parameter, whereas the predictive approach implies the use of the predictive
distribution mD(xn) =

∫
Θ

fn(xn|θ)πD(θ)dθ , where πD (design-prior) is a density
function that accounts for uncertainty on the design value of θ . Note that the condi-
tional approach is a special case of the predictive one, when πD is a point-mass prior
on µD; for this reason in the following we adopt the most general approach. See [4]
and [2] for a detailed discussion on this point.
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2.1 Results for the normal model

Let Xn be a random sample from a N(θ ,σ2) distribution. The MLE of θ is θ̂F = x̄n.
Assume for θ a normal prior density πA(θ) = N(θ |µA,σ2/nA), where nA is given
the standard interpretation of prior sample size. From standard results on con-
jugate analysis [1], the posterior distribution of θ is a normal density of mean
(n+nA)−1(nx̄n +nAµA) and variance (n+nA)−1σ2. Hence θ̂B = ωnx̄n +(1−ωn)µA,
with ωn = n(n+nA)−1.

Letting πD(θ)= N(θ |µD,σ2/nD), the predictive density function of x̄n is mD(x̄n)=
N(x̄n|µD,ψ2

n ), where ψ2
n = bnσ2 and bn = (n + nD)(nnD)−1. Given the above as-

sumptions, letting an = 1−ωn the explicit expression of Dn is as follows

Dn = a2
n(X̄n−µA)2.

It is straightforward to check that the predictive expected value of Dn is

en = a2
n[bnσ

2 +δ
2],

where δ = µA−µD, while the cdf of Dn is

pn(d) = Φ

[
b−1/2

n (δ +a−1
n d1/2) σ

−1
]
−Φ

[
b−1/2

n (δ −a−1
n d1/2) σ

−1
]
,

where Φ(·) is the standard Normal cdf.
Noting that bn = O(1) and an = o(n−1), it follows that en = o(n−2) and that, as n

diverges, Dn converges in probability to zero as fast as n−2. Both en and pn depend
on the prior means only through the absolute difference |δ |.

2.2 Quantifying the informativeness of the prior

Let us consider the set up of an efficacy clinical trial, with positive values of θ in-
dicating an effective treatment. Let us suppose for instance to select the minimum
sample size n∗ such that the frequentist conditional power reaches a desired level
(see among others [3]). For a normal model, under the assumptions of the previ-
ous section the power is β = Φ

(
θ
√

n
σ

+ zα/2

)
, where zα denotes the quantile of

a standard normal at level α . If we set for instance a design value for θ equal to
0.5, when σ = 2 and α = 0.05, the optimal sample size required to reach a 0.80
power is n∗ = 126. Let us assume a design prior of parameters µD = 0.5,nD = 20.
Based on n∗, we can compute en∗ for a given analysis prior. The predictive expected
discrepancy thus provides a measure of the conflict between the two alternative es-
timators and, at the same time, it represents the level of informativeness of the prior.
In fact, the larger en∗ , the stronger the impact of the prior in θ̂B. In this way it is
also possible to compare different choices for the analysis prior in terms of their
informativeness level. In Table 1a we report the values of en∗ for several choices of
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the analysis prior parameters. For illustrative purposes we may consider a threshold
value such as d = 0.2 (values exceeding 0.2 are bolded in the table): when a en∗ is
below this threshold the corresponding analysis prior can be considered relatively
non informative, otherwise its impact on the Bayes estimator is remarkable. As ex-
pected, for increasing values of nA, the analysis prior becomes more informative
and, consequently, the expected discrepancy is larger. The increments of the conflict
measure appear to be smaller when the analysis prior mean coincides with θD. Sim-
ilar considerations can be drawn by computing pn∗(d), but in this case a threshold
on a probability scale can be set: for instance in Table 1b the values of pn∗(d) below
a given level, say 0.5, identify the analysis prior parameters with stronger impact on
the Bayesian estimator.

Table 1 en∗ and pn∗ for several choices of the analysis prior, with n∗ = 126.

nA
µA 1 10 20 50 100 200

(a)

−2 0 0.035 0.122 0.523 1.269 2.440
−1 0 0.013 0.047 0.200 0.486 0.934
0 0 0.003 0.009 0.039 0.094 0.181
0.5 0 0.001 0.004 0.019 0.045 0.087

(b)

−2 1 1 0.944 0.027 0.001 0.000
−1 1 1 1 0.561 0.155 0.055
0 1 1 1 0.987 0.855 0.677
0.5 1 1 1 0.999 0.964 0.870

• µD = 0.5,nD = 20

In summary, in this work we have introduced a measure of conflict between clas-
sical and Bayesian point estimators. A similar methodology could be considered
extending the idea of discrepancy both to different objects to be compared (such as
interval estimators, Bayes factors, etc.) and to more complex models.
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