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Abstract An approach is presented to the division of a inméthsional empirical
distribution into “categories” or “classes”. It isased on the use of an objective
function, called bi-partial, which balances the &etness of approximation” of the
distribution by the categories determined and tHestihctness of the categories”.
Thereby, the optimum division, including the numlércategories, can be obtained.
The paper shows also how some of the existingibligions can hardly be treated with
the approach and discusses reasons and conseqoéruek cases.

K ey words empirical distribution, optimum division, classebjective function, bi-
partial approach, substantive criteria

1. The Setting

Assume a univariate empirical distribution of quignk with values fromR,. The
distribution consists af observations, indexadi = 1,...n. Denote this set of indicés
Without any loss to any sort of reasoning, we agsthat the values taken yin this
distribution, denoted;, are ordered in a non-decreasing sequence;.ie. x; for alli.

Next, assume we consider, instead of the sequerge fhe corresponding
sequence, formed by the respective cumulativeiloigion, i.e. the valueg defined as
means that a straight line, joining any two poinftshe sequencez,, sayz andz.,
whereAi is any integer number contained in the interval{P, has values above those
of the corresponding, i.e.z.1,...,Z+.1 (S€€ the example of Fig. 1).

For such Lorenz-curve-like data we would like tnsouct a piece-wise linear
approximation that is in some sense “optimal”. Ngmere would like to determine a
set of line segments such that the resulting €mam of absolute differences between
the actual values of and the corresponding values of the approximdiimgtion) is
possibly low, while the number of segments distisged is also kept reasonably low.
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Figure 1: A simple academic example of a convex cumuladig&ribution
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2. TheInterpretation

This problem, even if only roughly defined, appliest just to “approximation theory”,
but to a wide variety of concrete domains. The weemean here is the distribution of
social and/or economic indicator values among umitiexedi (countries, regions,
municipalities, ...), for which we would like to obitanot an “approximation”, but a set
of “classes” or “types”, among which the units ¢enassigned. This is the case of some
development indices, for which we seek an apprapdkassification of, say, countries,
into groups referred to as “highly developed”, “dped”, ..., “dramatically lagging”,
without assuming an arbitrary division of indexuwedi or thresholds in terms of.
Even more — we would not like to have the numbesuzh classes defined beforehand,
but, rather, obtained as the output from the proczd

If we obtained such a “more objective” division,sbd only on the shape of the
sequenceZ}, then the assignment of labels, such as “higldyedoped” etc., would be
done a posteriori on the basis of characteristitheclasses obtained, rather than from
a largely subjective perspective on how the classesuld” be defined or named.

The present analysis was motivated by exactly sugmnoposal by Nielsen, [4],
concerning the country development levels. Anotih@main of interest with similar
features is the one of distribution of wealth witla society, with thés corresponding
to somehow defined wealth classes. Nielsen’s [dppsal is analysed and extended on
the basis of the “bi-partial” approach, as desdhjleeg., by Owsiski, [5, 6].

3. Some Propertiesand the Initial Objective Function

It appears that solving the problem consists inimiging the error for subsequent
numbers of classes (segments) and finding the “epgtopriate” solution in terms of

the error value and the number of classes. The weak of such a procedure consists
in finding a “proper” trade-off between the errmidathe number of segments.
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Namely, obviously, the error for the optimum appmeation decreases as a
function of the number of classes. Given this, éuld appear “natural” to look for a
different form of the objective function we try tptimise (minimise), rather than, in
very general terms, the “total error + number afsks”.

For this purpose we shall introduce further notatidenote withg the index of the
subsequent classes, = 1,...p, p being the overall number of classes distinguished.
Denote withA, the set of indicesof observations; (and so alsa), classified in class
g. We shall denote by™" andz™ respectively, the minimum and maximum values
of 7, corresponding to the s&f. These values, in turn, correspond to indi€&$ and
iM% respectively. Let us denote the setiofalues, defining the partition of the
sequence 1,.n,into the subsetdy, i.e. the sequence composed of T%, i'™ ™",
iZmex 3mn - iP™<n, byig. By specifyingig, we define f;} and the entire solution.
When referring to the explicit set of subsefgl{we may also use the notatid for
partition of the set of observations.

For the assumed piece-wise linear approximatiomémeral form of thg" piece is

%) =a% +bf, 1)
where we can no longer care whethés discrete or continuous, but we observe the
values only for natural. The values of® andb® are determined in a natural manner
from the standard formulae, where we assume, fdymahat each segment is
composed of at least two consecutive observatiang!™>i1m":

aq - quax _ an‘lin (2)

sgmax __ ;gmin

i i
bq - quin ) quax _ quin iqmin. (3)
iqmax _iqmin

Note that after differentiating’(i) as in (1) we obtain the increasing sequence of
levelsa¥, corresponding to classes in terms of values. of

In view of the convexity of the sequencezpfthe sequence af' is non-decreasing,
while the sequence of is non-increasing.

We can now formulate the “minimum approximationo€trproblem, with the
respective objective function, denot€g({ Ay}), as follows:

minig (Co({Ag}) = XaXioaa(Z'(i)-2)), 4
where minimisation is performed with respect to sequencég. We shall denote the
optimum sequence, corresponding to the minimurd)nkyiq’ .

As mentioned, the optimum value of this objectivadtion is non-increasing in the
number of segmentg, (see the examples in Table 1, derived from tha ghbwn in
Fig. 1; although the assumptions differ among tkengles, and explicit optimisation
has not been carried out, the interpretation oféiselts appears to be obvious).

Since under convexity there is one optimign for each consecutive value pf
(quite in line yvith Nielsen, gOll), we can dendte minimum value o€5({Ag}) for a
givenp by Cp (p), so thatCpy (p) > Cp (p+1). Equality can only occur when sequences
X =X41 = ... €Xist, so that correspondiggz.,, ... lie on a straight line. Otherwise, any
increase op leads to a decrease @ (p). One could go in this manner to the extreme
of p=n, whenCp'(n) = 0, an “ideal approximation” Each observatiomuld then
constitute a separate “class” with one represemtati

Obviously, when the already mentioned sequercess.; = ..., occur, so that the
Z, Z.1 ..., are situated on a straight lir@, (p) shall remain at 0 also far< n, down to
the value, determined by the total length of sutifioum sequences.
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While construction of approximating segments is aajuestion, the issue that we
address here is related to finding a way to telovthdifferent the successive
observations have to be in order to assign thedifferent segments (classes)?”.

Table 1 Examples of division of the cumulative distributifom Fig. 1 and the corresponding
values ofCp({ Ag}). In this distributioni = 1,...,20.

Number of

segments: 3 4 5 6
Subsets of {1-3} {1-5} {5-10} {1-3} {4-7} {1-3} {4-7} {8-
indices forming| {4-15} {10-15} {8-10} {11-15} 10} {11-13} {14-
the division: {16-20} | {15-20} {16-20} 15} {16-20}
Co({AR) 30.75 7.6 2.4 1.05

4. Construction of a Bi-Partial Objective Function

If the formulation were “minimise the error with 4w number of segments as
possible”, the following formulation would result:

min (Co({Ag}) + W(p)) ®)

wherew(p) is the weight attached to the number of segméimisconsecutive values of
p the minimum ofCp({Ag}) would be found, and then the minimum of the fliog
from (5) determined. Although this procedure migeem cumbersome, but, as we
expect not too many segments to correspond to apiinit would be numerically
feasible. We shall, though, not go into the techiletails, for reasons given below.

Namely, now, the essence of the problem is traresfeto determination of the
function w(.). In cases whemp has a concrete interpretation, like cost, whilerer
minimisation leads to definite benefits (in teclali@pplications or in operational
research), then determinationwaf.) is feasible, even if difficult. This is not, Wwever,
the case with our problem, where we look for somssjply “natural” division of the
distribution, and no cost / benefit, except for theility of use of appropriate linguistic
labels (“very highly developed”, “highly developed?), is involved.

As we try to find the “natural” division of the cwtative distribution (provided it
exists, and the method we aim at ought to tell hether it does), therefore, we should
refer to some “counterweight”, analogous to that@b) in (5), but having the same
sort of meaning and kind of measuremenCg Aq}). In this way we might be able to
try to define the propgy and at the same time thgg or, otherwise, theAg} = P.

Thus, similarly as in (5), we would like to add@g({ Aq}) a component that would
penalize, in this case, for the division into segte¢hat are in some way “too similar”,
especially in terms of subsequefit In general terms the respective bi-partial olject
function and the corresponding problem would Idké |

min (Co({Ah) + CX{A), (6)
whereCS({Aq}) corresponds to aggregate similarity betweendbesecutive segments,
based primarily on differences of consecutifeA concrete form o€%({ Ag}) might be
constructed as follows:

-- first, a kind of difference between two consémitsegmentsg-1 andq, is
measured, from the point of view of the succeedigmentg, as, for instance,

quin _ a.q»liqmin _ bq»l (7)
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i.e. the difference between the actual value af the beginning of the next" subset
of observations, and the “approximation” of the samesulting from the previous
segment. This difference is always non-negative, uconvexity of ¢}, and can be
interpreted as a “distance” between the two coriseceegments in the approximation;

-- as we wish to penalize witb¥(.) similarity, not distance (difference), in order to
convert (7) into similarity, we subtract it from ampper bound, which might be
constituted by the maximum of a similar differerfoe a given data set, namely the
biggest difference of tangents along the curveg,dfe. between its beginning and end;
the two extreme tangen&? anda™, are defined as:

a®=zfi;; and a” = (- zy)/(in—ina); ®)

yet, in order to calculate the proper difference, must have full expressions for the
lines corresponding t@a™ anda™, allowing for their use for consecutive subsktswe
assume, namely, that all four lines involved, cgpnding tee®, a®*, a® anda™ cross
at the point, defined otherwise by the crossinghef lines, corresponding #,; and
A, from this condition we derive the valuestpfto be used in conjunction wi Y and
a™ (denoted, respectivelp, ™ andb"™) in the appropriate expression, namely:

b'® =p7 - @® —a% (b —bY/(a? —ah) (9a)

b'®™ =p7— @™ —a%) (b —bY/(a? —a®?). (9b)
Now, the expression fa€¥(.) for a singleq can be written down as

i 4 ') _ @Ojamin L 0y _ g gijamin ety (10)

where the second term in brackets is equivalethéodifference, given by (7), while
the preceding terms define the reference for thergi. The propose@(P) is the sum
overq of (10). Altogether, the minimised objective fuincttakes on the form:

Co{A) = Co({A) + CS({AJ}))f . .
2 Zinaq(@i+b1-z) + @M+ O- (@D D) - (Z e IBTY). (1)

where we formally assuna® = 0 (which is natural) ank’ = 0 (which is a bit artificial).
For the illustrative example considered here, #mults for the divisions, already
referred to in Table 1, taking, additionally, irtocount (11), are shown in Table 2.

Table 2 Examples of division of the cumulative distributiftom Fig. 1 and Table 1, and the
corresponding values @({Ag}), C{AJ), and Co5{AQ). In this distributioni = 1,...,20.

Number of

segments: 3 4 5 6
Subsets of {1-3}{4- | {1-5}{5-10} {1-3}{4-7} {1-3} {4-7} {8-
indices forming | 15} {10-15} {15- | {8-10} {11- 10} {11-13} {14-
the division: {16-20} | 20} 15} {16-20} | 15} {16-20}
Co({A) 30.75 7.6 2.4 1.05
C{AY 4.64 8.01 10.88 15.19
Co{AD 35.39 15.61 13.28 16.24

The bi-partial objective function selects amongeikamples provided the one with
five segments, its value for six segments being higher than that for four. Since the
respective partitions are (close to) nested, he. increasing number of segments
corresponds to divisions of selectagl forming the preceding partition, this example
shows that indeed we might deal with a convex diyjedunction along such nested



Jan W. Owsiski

families of partitions. This implies the existerafea non-trivial minimum oCDS({Aq})
in the set of allg, i.e. partitions, though we shall not be tryinglemonstrate this here.

5. Some General Properties and Potential Algorithms

The construction of the bi-partial objective fuocti follows only quite general
prerequisites of “global’ rationality, namely thate oppose two measures that
individually represent a one-sided rationality €likerror minimization), and that
together imply a compromise, based on their joiimimization or maximization. In
this, we do not enforce neither the concrete atrec{value ofp), nor any weight —
although weights can, of course, be applied, aed evay be effectively used.

In this particular case, we constructed the biiphibbjective function out of
componentp({ Ag}) corresponding to the error, resulting from tregproximation” of
the sequence af with a limited number of line segments, a(h?Q{Aq}), corresponding
to the penalty for the too small change of anglehef line between two consecutive
segments. Although we have not shown this with eespgo CS({Aq}), the two
components display opposite monotonicity alongrthmber of segmentg, that is -
minimum Cp({ Ag}), or Cp (p), decreases alony while CDS({Aq}) increases (we refer
here only to the sequenceigfminimizing Co({ Ag})).

The above remark indicates one of the fundameniatiples of construction of the
bi-partial objective function, namely tlapposite monotonicity of the two components.

One might indicate, though, that the two componénthis example are not quite
“symmetric”: there is only one element per segm’mmCS({Aq}), while there are
cardd,-2 elements per segment@({ Ag}), which, definitely, introduces a bias (in this
realisation of the bi-partial objective functioretiegments obtained cannot be too big,
i.e. cardg high). Indeed, we have provided here only an examthe entire
formulation of the problem, also involving the ‘errfunction”, is arbitrary (we could
use the sum of error squares).

Concerning the optimisation algorithms, the off-#ielf choice for a single-
dimensional problem is dynamic programming, likelassical categorisation problem
(see, e.g., [1]). Yet, we can also consider theraaah by the present author, closely
associated to the idea and properties of the higbasbjective function. We shall
provide here only the basic precepts of this apgroa

We shall illustrate the approach with the concifeten of CDS({Aq}), considered
here. Thus, assume we consider, instead of (Idgrameterised form:

CoT{AghT) = (1)Co({ Ag}) + rCY{A) (12)

with r0J[0,1], and we look for minimur@s%{ A}, 1) overig, i.e.Cp% ().

Then, assume we start the procedure frenD. We haveS,({ Agt0) = Co({AgD),
and, of course, the “optimum” partition is the omi¢h p = n, or, at most (according to
our form of the “error function”)p = int[n/2]+1, where intj] is the highest integer
number lower than (due to zeroing of elements G({ Ag}) at the segment endpoints).
Yet, we are not, in general, interested in suchlation. As we increasefrom 0, non-
zero weight starts to be assigned:f(){Aq}), and in order to obtai@y (r) for suchr, it
will “pay” at some definite value of, sayr’, to join two segments, for which the
difference of angle is the smallest, and hencepémalty inCS({Aq}) is the biggest. The
value ofr! can be easily determined on the basis of the ftarenbere provided.
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As we increase the parametdurther, we find the next on€?, for which merging
of another pair of consecutive segments “payséims ofCDS({Aq}, r). And so on. The
proper solution is found for the lastthat is not bigger than ¥ - i.e. for the equal
weights of the two components 655({Aq}, r). This, of course, is a sub-optimisation
algorithm, as it does not guarantee reaching optheer minimum oCDS({Aq}). Yet,
experience shows that it either actually reachesrimimum, or is very close to it.

No matter which method is used, the basic ratior@asists in forming the
segments\; for sequences of possibly simitar i.e.z approaching a straight line. An
adequately pronounced “jump” over one or severahseoutivei’s would then
correspond to a change frago g+1 in the optimum solution.

6. The Spiteful Reality

The above rationalization of the perspective orndilig the distributions of the kind we
mean here, though, encounters often an essemididnce in the actual shapes of such
distributions. An example, of quite a mild characte that is provided in Fig. 2,
showing ordered (from the “best” to the “worst”)urtry scores of well known Quality
of Life (QoL) ranking, [2] (here: for 2007, [3])ef close to 200 countries of the world.
The total scores shown, between 0 and 100, arel lmasaine partial scores for broad
domains, such as “living costs”, “economy”, “environent”, “freedom”, “safety”, etc.

The problem lies in the shape of the curve, cooeding to our sequence ®f
One can easily see that — due to the nature cfdbeng system — in the middle part of
the curve there are numerous shorter and longesdaments, some of them separated
only by minimum jumps. For this part of the curte tmethodology here outlined, and
also the broader rationality referred to in thecpding section, can well be successfully
applied. Yet, the two ends of the curve displayompgletely different character: sharp
increase of the gradient towards the two extremes.

Within these two extreme parts of the curve thehodology — and the broader
rationality — would have to distinguish severakskes, with very few objects, indeed, in
most cases — just one — in each consecutive dlagsseems to bend the rationality we
made use of. Also the approach of Nielsen [4] hatVe troubles with this shape.

This shape is not an incidental result of the mastmgy, adopted in creating the
QoL ranking and the actual data used. It is a cbtersi feature — the very same shape
appears in most of the partial score-based ranklhgseven much more pronounced in
some of them (e.g. for “living costs”, “economy”erivironment”, “infrastructure”).
This shape appears also from year to year. Theingsildo not result, though, from
some statistical measurement, at least not as dheyeported. They are either the
immediate result of quite subjective assessmenéxpérts on the individual variables,
contributing to the particular domains, or of thataj characterising these variables.
Thus, ultimately, we deal with somehow aggregateged opinions. This fact may
largely explain the character of the final outdtiis, namely, so that for many of the
“intermediate” countries, with respect to particwlariables, expert assessments barely
distinguish between them, while the extremes amdlyeaoted. Now, since there is
generally a high level of correlation between mamyiables (roughly +70% being
typical correlation coefficient), such observatipnencerning the extremes, summing
up, therefore, and creating the ends of the resfgectirves, as observed in Fig. 2.
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Figure 2. An example of the total Quality of Life scorirgge [4]
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Actually, the issue is, in general, insofar morécaes as many of the empirical,
“objective” or “statistical” distributions behavédeed, according to highly regular
functional shapes, so that there is very littleugid for dividing them in a different
manner than on the basis afbstantive criteria (e.g. the “biological minimum” or
“social minimum” thresholds in the case of povertfpplication of the approach
outlined here would then involve the measurestabfi divergence from the matching
functional shapes.

Hence, the following question arises in the conteixthe optimum distribution
division problem: if the results of a division egise indicate a similar phenomenon to
that here commented upon, indicating a sort ofXpeeted?) regularity, can we deduce
something about the way in which the respectiv&ildigion has been constructed?
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