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Abstract An approach is presented to the division of a unidimensional empirical 
distribution into “categories” or “classes”. It is based on the use of an objective 
function, called bi-partial, which balances the “exactness of approximation” of the 
distribution by the categories determined and the “distinctness of the categories”. 
Thereby, the optimum division, including the number of categories, can be obtained. 
The paper shows also how some of the existing distributions can hardly be treated with 
the approach and discusses reasons and consequences of such cases. 
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1. The Setting 

Assume a univariate empirical distribution of quantity x with values from R+. The 
distribution consists of n observations, indexed i, i = 1,…,n. Denote this set of indices I. 
Without any loss to any sort of reasoning, we assume that the values taken by x in this 
distribution, denoted xi, are ordered in a non-decreasing sequence, i.e. xi+1 ≥ xi for all i. 

Next, assume we consider, instead of the sequence {xi} I, the corresponding 
sequence, formed by the respective cumulative distribution, i.e. the values zi defined as 
zi = Σj=1,…,ixj. So, we deal with a sequence {zi} I that is increasing and also convex. This 
means that a straight line, joining any two points of the sequence {zi} I, say zi and zi+∆I, 
where ∆i is any integer number contained in the interval [2,n-i], has values above those 
of the corresponding zi, i.e. zi+1,…,zi+∆i-1 (see the example of Fig. 1). 

For such Lorenz-curve-like data we would like to construct a piece-wise linear 
approximation that is in some sense “optimal”. Namely, we would like to determine a 
set of line segments such that the resulting error (sum of absolute differences between 
the actual values of zi and the corresponding values of the approximating function) is 
possibly low, while the number of segments distinguished is also kept reasonably low. 
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Figure 1: A simple academic example of a convex cumulative distribution 
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2. The Interpretation 

This problem, even if only roughly defined, applies not just to “approximation theory”, 
but to a wide variety of concrete domains. The one we mean here is the distribution of 
social and/or economic indicator values among units indexed i (countries, regions, 
municipalities,…), for which we would like to obtain not an “approximation”, but a set 
of “classes” or “types”, among which the units can be assigned. This is the case of some 
development indices, for which we seek an appropriate classification of, say, countries, 
into groups referred to as “highly developed”, “developed”, …, “dramatically lagging”, 
without assuming an arbitrary division of index values i or thresholds in terms of xi. 
Even more – we would not like to have the number of such classes defined beforehand, 
but, rather, obtained as the output from the procedure. 

If we obtained such a “more objective” division, based only on the shape of the 
sequence {zi}, then the assignment of labels, such as “highly developed” etc., would be 
done a posteriori on the basis of characteristics of the classes obtained, rather than from 
a largely subjective perspective on how the classes “should” be defined or named. 

The present analysis was motivated by exactly such a proposal by Nielsen, [4], 
concerning the country development levels. Another domain of interest with similar 
features is the one of distribution of wealth within a society, with the i’s corresponding 
to somehow defined wealth classes. Nielsen’s [4] proposal is analysed and extended on 
the basis of the “bi-partial” approach, as described, e.g., by Owsiński, [5, 6]. 

3. Some Properties and the Initial Objective Function 

It appears that solving the problem consists in minimising the error for subsequent 
numbers of classes (segments) and finding the “most appropriate” solution in terms of 
the error value and the number of classes. The weak point of such a procedure consists 
in finding a “proper” trade-off between the error and the number of segments. 
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Namely, obviously, the error for the optimum approximation decreases as a 
function of the number of classes. Given this, it would appear “natural” to look for a 
different form of the objective function we try to optimise (minimise), rather than, in 
very general terms, the “total error + number of classes”. 

For this purpose we shall introduce further notation. Denote with q the index of the 
subsequent classes, q  = 1,…,p, p being the overall number of classes distinguished. 
Denote with Aq the set of indices i of observations xi (and so also zi), classified in class 
q. We shall denote by zqmin and zqmax, respectively, the minimum and maximum values 
of zi, corresponding to the set Aq. These values, in turn, correspond to indices iqmin and 
iqmax, respectively. Let us denote the set of i values, defining the partition of the 
sequence 1,…,n into the subsets Aq, i.e. the sequence composed of 1=i1min, i1max, i2min, 
i2max, i3min, …, ipmax=n, by iq. By specifying iq, we define {Aq} and the entire solution. 
When referring to the explicit set of subsets {Aq} we may also use the notation P, for 
partition of the set of observations. 

For the assumed piece-wise linear approximation the general form of the qth piece is 

zq(i) = aqi + bq,      (1) 

where we can no longer care whether i is discrete or continuous, but we observe the 
values only for natural i. The values of aq and bq are determined in a natural manner 
from the standard formulae, where we assume, formally, that each segment is 
composed of at least two consecutive observations, i.e. iqmax>iqmin: 

aq = 
minmax

minmax
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qq
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Note that after differentiating zq(i) as in (1) we obtain the increasing sequence of 
levels aq, corresponding to classes in terms of values of xi. 

In view of the convexity of the sequence of zi, the sequence of aq is non-decreasing, 
while the sequence of bq is non-increasing. 

We can now formulate the “minimum approximation error” problem, with the 
respective objective function, denoted CD({ Aq}), as follows: 

miniq (CD({ Aq}) = ∑q∑i∈Aq(z
q(i)-zi)),    (4) 

where minimisation is performed with respect to the sequence iq. We shall denote the 
optimum sequence, corresponding to the minimum in (4), by iq*. 

As mentioned, the optimum value of this objective function is non-increasing in the 
number of segments, p (see the examples in Table 1, derived from the data shown in 
Fig. 1; although the assumptions differ among the examples, and explicit optimisation 
has not been carried out, the interpretation of the results appears to be obvious). 

Since under convexity there is one optimum iq* for each consecutive value of p 
(quite in line with Nielsen, 2011), we can denote the minimum value of CD({ Aq}) for a 
given p by CD

*(p), so that CD
*(p) ≥ CD

*(p+1). Equality can only occur when sequences 
xi = xi+1 = … exist, so that corresponding zi, zi+1, … lie on a straight line. Otherwise, any 
increase of p leads to a decrease of CD

*(p). One could go in this manner to the extreme 
of p=n, when CD

*(n) = 0, an “ideal approximation”! Each observation would then 
constitute a separate “class” with one representative. 

Obviously, when the already mentioned sequences xi = xi+1 = …, occur, so that the 
zi, zi+1, …, are situated on a straight line, CD

*(p) shall remain at 0 also for p < n, down to 
the value, determined by the total length of such uniform sequences. 
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While construction of approximating segments is not a question, the issue that we 
address here is related to finding a way to tell “how different the successive 
observations have to be in order to assign them to different segments (classes)?”. 

Table 1 Examples of division of the cumulative distribution from Fig. 1 and the corresponding 
values of CD({ Aq}). In this distribution i = 1,…,20. 
Number of 
segments: 

 
3 

 
4 

 
5 

 
6 

Subsets of 
indices forming 
the division: 

{1-3} 
{4-15} 
{16-20} 

{1-5} {5-10} 
{10-15}  
{15-20} 

{1-3} {4-7}  
{8-10} {11-15} 
{16-20} 

{1-3} {4-7} {8-
10} {11-13} {14-
15} {16-20} 

CD({ Aq}) 30.75 7.6 2.4 1.05 

4. Construction of a Bi-Partial Objective Function 

If the formulation were “minimise the error with as low number of segments as 
possible”, the following formulation would result: 

min (CD({ Aq}) + w(p))      (5) 

where w(p) is the weight attached to the number of segments. For consecutive values of 
p the minimum of CD({ Aq}) would be found, and then the minimum of the function 
from (5) determined. Although this procedure might seem cumbersome, but, as we 
expect not too many segments to correspond to optimum, it would be numerically 
feasible. We shall, though, not go into the technical details, for reasons given below. 

Namely, now, the essence of the problem is transferred to determination of the 
function w(.). In cases when p has a concrete interpretation, like cost, while error 
minimisation leads to definite benefits (in technical applications or in operational 
research), then determination of w(.) is feasible, even if difficult. This is not, however, 
the case with our problem, where we look for some possibly “natural” division of the 
distribution, and no cost / benefit, except for the facility of use of appropriate linguistic 
labels (“very highly developed”, “highly developed”,…), is involved. 

As we try to find the “natural” division of the cumulative distribution (provided it 
exists, and the method we aim at ought to tell us whether it does), therefore, we should 
refer to some “counterweight”, analogous to that of w(p) in (5), but having the same 
sort of meaning and kind of measurement as CD({ Aq}). In this way we might be able to 
try to define the proper p and at the same time the iq, or, otherwise, the {Aq} = P. 

Thus, similarly as in (5), we would like to add to CD({ Aq}) a component that would 
penalize, in this case, for the division into segments that are in some way “too similar”, 
especially in terms of subsequent aq. In general terms the respective bi-partial objective 
function and the corresponding problem would look like 

min (CD({ Aq}) + CS({ Aq})),     (6) 

where CS({ Aq}) corresponds to aggregate similarity between the consecutive segments, 
based primarily on differences of consecutive aq. A concrete form of CS({ Aq}) might be 
constructed as follows: 

-- first, a kind of difference between two consecutive segments, q-1 and q, is 
measured, from the point of view of the succeeding segment, q, as, for instance, 

ziqmin - a
q-1iqmin - bq-1       (7) 



 
 
 
 
 
 
On Dividing an Empirical Distribution into Optimal Segments 

i.e. the difference between the actual value of zi at the beginning of the next, qth subset 
of observations, and the “approximation” of the same, resulting from the previous 
segment. This difference is always non-negative, due to convexity of {zi}, and can be 
interpreted as a “distance” between the two consecutive segments in the approximation; 

-- as we wish to penalize with CS(.) similarity, not distance (difference), in order to 
convert (7) into similarity, we subtract it from an upper bound, which might be 
constituted by the maximum of a similar difference for a given data set, namely the 
biggest difference of tangents along the curve of zi, i.e. between its beginning and end; 
the two extreme tangents, a(1) and a(n), are defined as: 

a(1) = z1/i1;    and    a(n) = (zn - zn-1)/(in – in-1);   (8) 

yet, in order to calculate the proper difference, we must have full expressions for the 
lines corresponding to a(1) and a(n), allowing for their use for consecutive subsets Aq; we 
assume, namely, that all four lines involved, corresponding to aq, aq-1, a(1) and a(n) cross 
at the point, defined otherwise by the crossing of the lines, corresponding to Aq-1 and 
Aq; from this condition we derive the values of b, to be used in conjunction with a(1) and 
a(n) (denoted, respectively, b*(1) and b*(n)) in the appropriate expression, namely: 

b*(1) = bq – (a(1) – aq)(bq-1 – bq)/(aq – aq-1)    (9a) 

b*(n) = bq – (a(n) – aq)(bq-1 – bq)/(aq – aq-1).    (9b) 

Now, the expression for CS(.) for a single q can be written down as 

a(n)iqmin + b*(n) – (a(1)iqmin + b*(1)) – (ziqmin - a
q-1iqmin - bq-1)  (10) 

where the second term in brackets is equivalent to the difference, given by (7), while 
the preceding terms define the reference for the given q. The proposed CS(P) is the sum 
over q of (10). Altogether, the minimised objective function takes on the form: 

CD
S({ Aq}) = CD({ Aq}) + CS({ Aq})) = 

 ΣqΣi∈Aq(a
qi+bq-zi) + Σq(a

(n)iqmin+b*(n)-(a(1)iqmin+b*(1)) - (ziqmin-a
q-1iqmin-bq-1)).  (11) 

where we formally assume a0 = 0 (which is natural) and b0 = 0 (which is a bit artificial). 
For the illustrative example considered here, the results for the divisions, already 

referred to in Table 1, taking, additionally, into account (11), are shown in Table 2.  

Table 2 Examples of division of the cumulative distribution from Fig. 1 and Table 1, and the 
corresponding values of CD({ Aq}), CS({ Aq}), and CD

S({ Aq}). In this distribution i = 1,…,20. 
Number of 
segments: 

 
3 

 
4 

 
5 

 
6 

Subsets of 
indices forming 
the division: 

{1-3} {4-
15} 
{16-20} 

{1-5} {5-10} 
{10-15} {15-
20} 

{1-3} {4-7} 
{8-10} {11-
15} {16-20} 

{1-3} {4-7} {8-
10} {11-13} {14-
15} {16-20} 

CD({ Aq}) 30.75 7.6 2.4 1.05 
CS({ Aq}) 4.64 8.01 10.88 15.19 
CD

S({ Aq})  35.39 15.61 13.28 16.24 

The bi-partial objective function selects among the examples provided the one with 
five segments, its value for six segments being also higher than that for four. Since the 
respective partitions are (close to) nested, i.e. the increasing number of segments 
corresponds to divisions of selected Aq forming the preceding partition, this example 
shows that indeed we might deal with a convex objective function along such nested 
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families of partitions. This implies the existence of a non-trivial minimum of CD
S({ Aq}) 

in the set of all iq, i.e. partitions, though we shall not be trying to demonstrate this here. 

5. Some General Properties and Potential Algorithms 

The construction of the bi-partial objective function follows only quite general 
prerequisites of “global’ rationality, namely that we oppose two measures that 
individually represent a one-sided rationality (like error minimization), and that 
together imply a compromise, based on their joint minimization or maximization. In 
this, we do not enforce neither the concrete structure (value of p), nor any weight – 
although weights can, of course, be applied, and even may be effectively used. 

In this particular case, we constructed the bi-partial objective function out of 
components CD({ Aq}) corresponding to the error, resulting from the “approximation” of 
the sequence of zi with a limited number of line segments, and CS({ Aq}), corresponding 
to the penalty for the too small change of angle of the line between two consecutive 
segments. Although we have not shown this with respect to CS({ Aq}), the two 
components display opposite monotonicity along the number of segments, p, that is - 
minimum CD({ Aq}), or CD

*(p), decreases along p, while CD
S({ Aq}) increases (we refer 

here only to the sequence of iq minimizing CD({ Aq})). 
The above remark indicates one of the fundamental principles of construction of the 

bi-partial objective function, namely the opposite monotonicity of the two components. 
One might indicate, though, that the two components in this example are not quite 

“symmetric”: there is only one element per segment in CS({ Aq}), while there are 
cardAq-2 elements per segment in CD({ Aq}), which, definitely, introduces a bias (in this 
realisation of the bi-partial objective function the segments obtained cannot be too big, 
i.e. cardAq high). Indeed, we have provided here only an example: the entire 
formulation of the problem, also involving the “error function”, is arbitrary (we could 
use the sum of error squares). 

Concerning the optimisation algorithms, the off-the-shelf choice for a single-
dimensional problem is dynamic programming, like in classical categorisation problem 
(see, e.g., [1]). Yet, we can also consider the approach by the present author, closely 
associated to the idea and properties of the bi-partial objective function. We shall 
provide here only the basic precepts of this approach. 

We shall illustrate the approach with the concrete form of CD
S({ Aq}), considered 

here. Thus, assume we consider, instead of (11), a parameterised form: 

CD
S({ Aq}, r) = (1-r)CD({ Aq}) + rCS({ Aq}))    (12) 

with r∈[0,1], and we look for minimum CD
S({ Aq}, r) over iq, i.e. CD

S*(r). 
Then, assume we start the procedure from r = 0. We have CD

S({ Aq},0) = CD({ Aq}), 
and, of course, the “optimum” partition is the one with p = n, or, at most (according to 
our form of the “error function”), p = int[n/2]+1, where int[v] is the highest integer 
number lower than v (due to zeroing of elements of CD({ Aq}) at the segment endpoints). 
Yet, we are not, in general, interested in such a solution. As we increase r from 0, non-
zero weight starts to be assigned to CS({ Aq}), and in order to obtain CD

S*(r) for such r, it 
will “pay” at some definite value of r, say r1, to join two segments, for which the 
difference of angle is the smallest, and hence the penalty in CS({ Aq}) is the biggest. The 
value of r1 can be easily determined on the basis of the formulae here provided. 
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As we increase the parameter r further, we find the next one, r2, for which merging 
of another pair of consecutive segments “pays” in terms of CD

S({ Aq}, r). And so on. The 
proper solution is found for the last rt that is not bigger than ½ - i.e. for the equal 
weights of the two components of CD

S({ Aq}, r). This, of course, is a sub-optimisation 
algorithm, as it does not guarantee reaching of the proper minimum of CD

S({ Aq}). Yet, 
experience shows that it either actually reaches the minimum, or is very close to it. 

No matter which method is used, the basic rationale consists in forming the 
segments Aq for sequences of possibly similar xi, i.e. zi approaching a straight line. An 
adequately pronounced “jump” over one or several consecutive i’s would then 
correspond to a change from q to q+1 in the optimum solution. 

6. The Spiteful Reality 

The above rationalization of the perspective on dividing the distributions of the kind we 
mean here, though, encounters often an essential hindrance in the actual shapes of such 
distributions. An example, of quite a mild character at that is provided in Fig. 2, 
showing ordered (from the “best” to the “worst”) country scores of well known Quality 
of Life (QoL) ranking, [2] (here: for 2007, [3]), for close to 200 countries of the world. 
The total scores shown, between 0 and 100, are based on nine partial scores for broad 
domains, such as “living costs”, “economy”, “environment”, “freedom”, “safety”, etc. 

The problem lies in the shape of the curve, corresponding to our sequence of xi. 
One can easily see that – due to the nature of the scoring system – in the middle part of 
the curve there are numerous shorter and longer flat segments, some of them separated 
only by minimum jumps. For this part of the curve the methodology here outlined, and 
also the broader rationality referred to in the preceding section, can well be successfully 
applied. Yet, the two ends of the curve display a completely different character: sharp 
increase of the gradient towards the two extremes. 

Within these two extreme parts of the curve the methodology – and the broader 
rationality – would have to distinguish several classes, with very few objects, indeed, in 
most cases – just one – in each consecutive class. This seems to bend the rationality we 
made use of. Also the approach of Nielsen [4] will have troubles with this shape. 

This shape is not an incidental result of the methodology, adopted in creating the 
QoL ranking and the actual data used. It is a consistent feature – the very same shape 
appears in most of the partial score-based rankings. It is even much more pronounced in 
some of them (e.g. for “living costs”, “economy”, “environment”, “infrastructure”). 
This shape appears also from year to year. The rankings do not result, though, from 
some statistical measurement, at least not as they are reported. They are either the 
immediate result of quite subjective assessments of experts on the individual variables, 
contributing to the particular domains, or of the data, characterising these variables. 
Thus, ultimately, we deal with somehow aggregated expert opinions. This fact may 
largely explain the character of the final output. It is, namely, so that for many of the 
“intermediate” countries, with respect to particular variables, expert assessments barely 
distinguish between them, while the extremes are easily noted. Now, since there is 
generally a high level of correlation between many variables (roughly +70% being 
typical correlation coefficient), such observations, concerning the extremes, summing 
up, therefore, and creating the ends of the respective curves, as observed in Fig. 2. 

 



 
 
 
 
 
 

Jan W. Owsiński 

Figure 2. An example of the total Quality of Life scoring, see [4] 
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Actually, the issue is, in general, insofar more serious as many of the empirical, 

“objective” or “statistical” distributions behave, indeed, according to highly regular 
functional shapes, so that there is very little ground for dividing them in a different 
manner than on the basis of substantive criteria (e.g. the “biological minimum” or 
“social minimum” thresholds in the case of poverty). Application of the approach 
outlined here would then involve the measures of fit to / divergence from the matching 
functional shapes. 

Hence, the following question arises in the context of the optimum distribution 
division problem: if the results of a division exercise indicate a similar phenomenon to 
that here commented upon, indicating a sort of (unexpected?) regularity, can we deduce 
something about the way in which the respective distribution has been constructed? 
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