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Abstract A local regression smoother is proposed for the case when the response is
a circular variable. The method allows for both smoothing circular time series and
circular quantiles estimation.
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1 Introduction

We propose a nonparametric regression smoother for the case when the response is
a circular random variable. Our smoother is defined by the arc-tangent of the ratio
between the locally weighted components of the first sample trigonometric moment
of the response variable. Simple adaptations of the weight function enable a unified
formulation for both linear and circular predictors, whereas these cases have been
tackled by quite distinct parametric methods. See, for example, [9], [7], [10], [5],
[6], [4] for some contributions on circular-circular regression, and [7] and [8] for the
linear predictor case. In Section 2 we introduce our regression smoother, whereas
Section 3 and 4 are respectively devote to its adaptation for circular time series
analysis and circular quantiles estimation.
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2 Regression smoother for circular response

Let T := [−π,π). Consider a �× T− valued random vector (∆ ,Θ), where � is
a generic domain. The dependence of the response Θ on the predictor ∆ is well
described by a (measurable) function m : �→ T, such that the risk

E[1− cos(Θ −m(∆))],

is as small as possible. For δ ∈ �, let m1(δ ) := E[sin(Θ)|∆ = δ ], and m2(δ ) :=
E[cos(Θ)|∆ = δ ]. Then the minimizer of the above risk is given by m(δ ) =
atan2[m1(δ ),m2(δ )], where the function atan2[y,x] returns the angle between the
x-axis and the vector from the origin to (x,y). This approach implies the model

Θi = [m(∆i)+ εi](mod2π) (i = 1, . . . ,n)

where the εis are i.i.d. random angles having zero mean direction, finite concentra-
tion, and are independent of the ∆is. To introduce our smoother we preliminarily
define the sample statistics

m̂1(δ ) =
1
n

n

∑
i=1

sin(Θi)W (d(∆i,δ )) and m̂2(δ ) =
1
n

n

∑
i=1

cos(Θi)W (d(∆i,δ )), (1)

where d(·, ·) is a distance, and W denotes a local weight, conceived in such a way
that the ratio m̂1(δ )/m̂2(δ ) is asymptotically unbiased for m1(δ )/m2(δ ). Then, an
estimator for the regression function at δ ∈ � is defined as

m̂(δ ) = atan2[m̂1(δ ), m̂2(δ )]. (2)

Clearly, the weights have to be specific to the nature of the predictors. Here we
consider the case where � = T, i.e. the circular predictor case, and the case where
�= [0,1], which corresponds, without loss of generality, to the linear predictor case.
For both cases, we propose two kind of weights, one aimed at a local constant fit,
the other one at a local linear fit.

When � = [0,1], we use standard euclidean weights. When � = T, to take into
account the circular nature of the predictor variable, we use periodic functions as
weights. In particular, we propose as weights for local constant fit, circular kernels,
say Kκ , introduced by [1] in the context of density estimation. Here κ > 0 is a
concentration parameter which, although not being a scale factor, plays the rôle
of the inverse of the bandwidth of euclidean kernels. A different version of our
smoother can be obtained by setting
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W (d(δ ,∆i)) = n−1Kκ(δ −∆i)

{
n

∑
j=1

Kκ(δ −∆ j)sin(δ −∆ j)

−sin(δ −∆i)
n

∑
j=1

Kκ(δ −∆ j)sin(δ −∆ j)

}
,

which resembles the structure of the weight function of euclidean local linear fit. Ac-
curacy measures for the estimator equipped with the two kinds of weights, in both
circular and linear predictor case, have been derived, along with optimal smoothing,
in [2] . Moreover, the derivation of a central limit theorem for the estimator allowed
the construction of approximate confidence intervals for m(δ ). As a further result,
we found that, when data are assumed to be observations from a stationary process
satisfying some mixing conditions, (2) shares essentially the same asymptotic be-
havior as in the i.i.d. case. Then, assuming Θi =Θi+a, with a ∈ Z, we have that (2)
can be used for autoregressive functions estimation.

3 Smoothing and prediction for circular time series

The estimator introduced in Section 2 can be extended to nonparametric time series
analysis, by smoothing on the time domain. This obviously implies the introduction
of a different model. Specifically, letting {Θt}T

t=1 be a time series of angles, we
assume the model

Θt = [m(t/T )+ εt ](mod2π) (3)

where m : [0,1]→ T is an unknown smooth function of time representing the trend,
and {εt} is a T-valued stationary stochastic process, with E[sin(εt)] = 0 and with
autocovariance function regularly varying at infinity with exponent α > 0, i.e., as `
goes to infinity,

a1)Cov[cos(εt),cos(εt+`)]∼ L1|`|−α ;
a2)E[cos(εt)sin(εt+`)]∼ L2|`|−α ;
a3)E[sin(εt)sin(εt+`)]∼ L3|`|−α ;

where Li ∈R\{0}, for i∈ {1,2,3}, `∈Z, and |`|α := 1 if `= 0. We say that the case
0 < α < 1 indicates a long-range dependence, whereas the case α > 1 implies so-
called short-range dependence. Then an estimator for the trend function at t/T can
be constructed by adapting the smoother (2), by setting δ = t/T and ∆i = i/T , and
assuming the weight in (1) to be a euclidean kernel supported on [0,1], or to have
the formulation of the local linear fitting weight. We obtain asymptotic behavior of
the resulting estimators, in the different settings of α . For the task of prediction–for
which we mean the estimation of m at a point t/T ∈ (1,+∞)– we still use model
(3), but now the domain of m is assumed to be [0,+∞).
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4 Kernel quantile estimation

Letting Θ1, · · · ,Θn be a random sample from an absolutely continuous circular dis-
tribution function, an estimator of the circular population quantile of order p∈ (0,1)
can be defined as Q̂κ(p) := atan2(q̂1(p), q̂2(p)), where

q̂1(p) :=
1
n

n

∑
i=1

Kκ(2πi/n−2π p)sin(Θ(i)), and q̂2 :=
1
n

n

∑
i=1

Kκ(2πi/n−2π p)cos(Θ(i)),

where Θ(i) denotes the order statistics of circular rank 2πi/n−π . A different esti-
mator, in the same spirit, can be defined by setting

q̂1(p) :=
∫ 1

0
2πKκ(2π p−2πu)sin(F−1

n (u))du,

and

q̂2(p) :=
∫ 1

0
2πKκ(2π p−2πu)cos(F−1

n (u))du,

where Fn(θ) := n−1
∑

n
11{Θi≤θ}, and F−1

n (u) := inf{θ : Fn(θ)≥ u} is the empirical
circular quantile of order u.
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