Nonparametric smoothing of circular data

Agnese Panzera and Charles C. Taylor

Abstract A local regression smoother is proposed for the case when the response is
a circular variable. The method allows for both smoothing circular time series and
circular quantiles estimation.
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1 Introduction

We propose a nonparametric regression smoother for the case when the response is
a circular random variable. Our smoother is defined by the arc-tangent of the ratio
between the locally weighted components of the first sample trigonometric moment
of the response variable. Simple adaptations of the weight function enable a unified
formulation for both linear and circular predictors, whereas these cases have been
tackled by quite distinct parametric methods. See, for example, [9], [7], [10], [5],
[6], [4] for some contributions on circular-circular regression, and [7] and [8] for the
linear predictor case. In Section 2 we introduce our regression smoother, whereas
Section 3 and 4 are respectively devote to its adaptation for circular time series
analysis and circular quantiles estimation.

Agnese Panzera
DMQTE, University of Chieti-Pescara, Viale Pindaro 42, Pescara, Italy
e-mail: agnesepanzera@yahoo.it

Charles C. Taylor
Department of Statistics, University of Leeds, Leeds LS2 9JT, UK
e-mail: charles @maths.leeds.ac.uk



2 Agnese Panzera and Charles C. Taylor

2 Regression smoother for circular response

Let T := [—m,n). Consider a x T— valued random vector (A,®), where is
a generic domain. The dependence of the response ® on the predictor A is well
described by a (measurable) function m: — T, such that the risk

E[1 —cos(®@ —m(A))],

is as small as possible. For 6 € , let m;(6) := E[sin(®)]|A = 8], and my(0) :=
E[cos(®)|A = &]. Then the minimizer of the above risk is given by m(8) =
atan2[m; (0),my(06)], where the function atan2[y,x] returns the angle between the
x-axis and the vector from the origin to (x,y). This approach implies the model

O, = [m(A,) + 8,'](11]0(127[) (l =1,... ,n)

where the &;s are i.i.d. random angles having zero mean direction, finite concentra-
tion, and are independent of the A;s. To introduce our smoother we preliminarily
define the sample statistics

ml(é):%isin(@i)w(dmi,é)) and m2(5):%icos(@i)w(d(mﬁ)), 1)
i=1 i=1

where d(-,-) is a distance, and W denotes a local weight, conceived in such a way
that the ratio 7 (6) /M2 (0) is asymptotically unbiased for m;(8)/m2(8). Then, an
estimator for the regression function at § € is defined as

m(8) = atan2[iy (8), 12 (5)]. 2)

Clearly, the weights have to be specific to the nature of the predictors. Here we
consider the case where =T, i.e. the circular predictor case, and the case where

= [0, 1], which corresponds, without loss of generality, to the linear predictor case.
For both cases, we propose two kind of weights, one aimed at a local constant fit,
the other one at a local linear fit.

When = [0,1], we use standard euclidean weights. When =T, to take into
account the circular nature of the predictor variable, we use periodic functions as
weights. In particular, we propose as weights for local constant fit, circular kernels,
say Ky, introduced by [1] in the context of density estimation. Here ¥ > 0 is a
concentration parameter which, although not being a scale factor, plays the role
of the inverse of the bandwidth of euclidean kernels. A different version of our
smoother can be obtained by setting
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W(d(8,4A) =n 'Ki(8 - A) { Z Ki(8 —A;)sin(8 — 4))
Jj=1

—sin(8 — 4;) i K (8 —Aj)sin(d — Aj)} ;

Jj=1

which resembles the structure of the weight function of euclidean local linear fit. Ac-
curacy measures for the estimator equipped with the two kinds of weights, in both
circular and linear predictor case, have been derived, along with optimal smoothing,
in [2] . Moreover, the derivation of a central limit theorem for the estimator allowed
the construction of approximate confidence intervals for m(J). As a further result,
we found that, when data are assumed to be observations from a stationary process
satisfying some mixing conditions, (2) shares essentially the same asymptotic be-
havior as in the i.i.d. case. Then, assuming &; = O, with a € Z, we have that (2)
can be used for autoregressive functions estimation.

3 Smoothing and prediction for circular time series

The estimator introduced in Section 2 can be extended to nonparametric time series
analysis, by smoothing on the time domain. This obviously implies the introduction
of a different model. Specifically, letting {@t}le be a time series of angles, we
assume the model

O, = [m(t/T) + &](mod2x) 3)

where m : [0,1] — T is an unknown smooth function of time representing the trend,
and {&} is a T-valued stationary stochastic process, with E[sin(&)] = 0 and with
autocovariance function regularly varying at infinity with exponent & > 0, i.e., as £
goes to infinity,

al)Cov[cos(&),cos(&4¢)] ~ L1 €|~ %;
a2)E[cos(&)sin(&4¢)] ~ Lo |0|~%;
a3)E[sin(g)sin(&4¢)] ~ La|¢|~%;

where L; € R\ {0}, fori € {1,2,3},¢€ Z,and |¢|* := 1 if £ = 0. We say that the case
0 < o < 1 indicates a long-range dependence, whereas the case @ > 1 implies so-
called short-range dependence. Then an estimator for the trend function at #/T can
be constructed by adapting the smoother (2), by setting 6 =¢/7 and A; = i/T, and
assuming the weight in (1) to be a euclidean kernel supported on [0, 1], or to have
the formulation of the local linear fitting weight. We obtain asymptotic behavior of
the resulting estimators, in the different settings of ¢. For the task of prediction—for
which we mean the estimation of m at a point ¢/T € (1,+4c0)— we still use model
(3), but now the domain of m is assumed to be [0, 4).
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4 Kernel quantile estimation

Letting Oy, --- , 0, be a random sample from an absolutely continuous circular dis-
tribution function, an estimator of the circular population quantile of order p € (0,1)
can be defined as O (p) := atan2(g;(p),G2(p)), where

S| =

< . . 1 ¢ .
gi1(p):= ZKK(277:i/n727rp) sin(0;)), and ¢ := . ZKK(277:z/n727rp) cos(@;)),
i=1 '

i=1

where ©; denotes the order statistics of circular rank 27ti/n — 7. A different esti-
mator, in the same spirit, can be defined by setting

1
41(p) = /0 27K (27p — 27w sin(E. " (u))du,

and '
i (p) = / 27K (27p — 27u) cos(F, (u))du,
0

where F,(8) :=n~'Y" 1(,<6}> and E;'(u) := inf{0 : F,(8) > u} is the empirical
circular quantile of order u.
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