
New approach to the identification of the Inverse 
Weibull model 

Giuliana Pallotta and Biagio Palumbo 

Abstract This paper proposes a wider application of the Inverse Weibull (IW) 
distribution. Several generative mechanisms leading to the IW distribution are 
introduced, offering practitioners a “physical” approach to this model. In order to 
illustrate the adequacy of the IW model to interpret phenomena from different 
application areas, some applicative examples are provided and fully discussed. 

1 Introduction 

The Inverse Weibull (IW) distribution is not widely known and, consequently, scarcely 
used. On the contrary, important types of mechanism found in Biometry, Reliability and 
related fields generate random variables having such a distribution. Moreover, failing to 
identify this distribution may lead to use “similar” models such as Inverse Gaussian (IG) 
and Lognormal (LN) ones. However, these models, even when appear well fitted to (IW) 
data, may lead to incorrect assessments concerning, for instance, critical prognoses. 

The IW model is referred to with many different names like “Fréchet-type” (Johnson 
et al. 1995) and “Inverse Weibull” (Erto, 1982, where this name was assigned to it; 
Johnson et al. 1995). 

Its peculiar upside-down bathtub-shaped hazard rate function has been really found 
in several applications (Erto 1989; Jiang et al. 2003). 

Unfortunately, also the IG and the LN models show similarly shaped hazard rate 
functions. So, besides the best-fitting policy, to allow a preliminary identification of the 
IW model, we found very useful to take into account the main actual generative 
mechanisms leading to it. So, this perspective motivates a further insight into the IW 
model. 

                                                            
1 Giuliana Pallotta, University of Naples Federico II; email: g.pallotta@unina.it 

Biagio Palumbo, University of Naples Federico II; email: biagio.palumbo@unina.it 



2 Pallotta and Palumbo 

The basic statistical functions of the IW model and their specific properties have 
been illustrated in Erto (1989). Four generative mechanisms leading to the IW model are 
reported in Section 2, each one with a related illustrative example. The first three listed 
mechanisms are introduced and discussed thoroughly in Erto (1989). The last one 
mechanism is derived from literature. At last, conclusions are given in Section 3. 

2 Generative mechanisms with illustrative examples 

In order to practically identify the IW distribution as the main candidate to interpret 
specific phenomena, the knowledge of the generative mechanisms, leading to it, is helpful 
in a preliminary model selection phase. We found the following principal ones: 
“Deterioration”, “Stress-Strength”, “Shocks” and “Extreme maximum value” 
mechanisms. Four real datasets have been considered and are reported in Table 1. For 
each dataset the adequacy of the IW model has been examined by identifying the specific 
generative mechanism. In addition, for each dataset, the adequacy is graphically 
examined in terms of the data scattering around the straight line fitted using the Least 
Square estimates proposed in Erto (1989). The related correlation coefficients ρ  are 
reported in the last column of Table 1. As expected, also other “similar” models show a 
significant goodness-of-fit to the above datasets, as shown in Table 2 reporting the 
Kolmogorov-Smirnov test results. We also derived a novel test based on the Ratio of 
Maximized Likelihoods (RML) (see Dumonceaux and Antle 1973), starting from that 
the log-transformation of the IW and the LN distributions into the Type 1 extreme value 
distribution for maxima and the Normal distribution, respectively. For each dataset the 
value of the test statistic and the p-value are reported in Table 3. As we can see, we 
could not reject the IW model in favour of the LN one in all the four examples. However, 
we point out that the power of the RML test, evaluated via Monte Carlo simulation, is 
not always satisfactory, mostly for small sample sizes. 

So the choice of the best model is questionable and the approach via the generative 
mechanism can be useful to explicit the knowledge of the involved scientific field and it 
results effective to preliminarily select the IW model as the main candidate to be used for 
interpretative purposes. 

The “Deterioration” mechanism has been illustrated in Erto (1989). This mechanism 
is found in degenerative phenomena when the deterioration deep reaches a fixed 
threshold. The related dataset consists of 46 maintenance data on active repair times (in 
hours) for an airborne communication transceiver. The data were used in Chhikara and 
Folks (1989). Repair times can be described via the distribution of the (first-passage) 
time that a Brownian motion with positive drift takes to reach a fixed positive threshold 
(see, e.g., Sherif and Smith 1980). We can argue that the stress of the repair action (in 
terms of the maintenance “force” to lead to system repair) is a Weibull random variable. 
On the other hand, the system resists against the repair “force” via a practically constant 
strength which is an upper threshold. 

The “Stress-Strength” mechanism has been illustrated in Erto (1989). This 
mechanism can be found in patients with a decreasing vital strength (e.g., because they 
are subjected to intensive and prolonged chemotherapeutic treatments) and subject to a 
relapse having a random virulence. The related dataset consists of survival times (in 
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days) of 11 male patients affected by squamous carcinoma in the oropharynx and 
subjected to radiation therapy alone (Ebrahimi 1993). More specifically, patients show a 
physical weakening over time (as a consequence of the considerable toxic effects of the 
radiation treatment). Therefore, they exhibit a decreasing vital strength and the 
corresponding aggressiveness of the carcinoma results to be random but time 
independent. 

The “Shocks” mechanism has been illustrated in Erto (1989). This mechanism is 
found in Biometry when the immune system works randomly against antigens or 
transient defects, and its effectiveness decreases quickly as the incubation time increases 
(see Le Cam and Neyman 1982, p. 15). The related dataset consists of survival times (in 
seconds) of 20 insects exposed to a new insecticide (Lee 1992). In this case we can 
argue that the effectiveness of the immune response decreases very slowly over time. 
Moreover, the lack of memory of the immune system of insects, discussed in Vilmos and 
Kurucz (1998), allows modeling their defensive attempts, against the toxic substance, by 
means of the Poisson distribution. Thus a “shocks” mechanism follows. 

The “Extreme maximum value” mechanism is related to the maximum value of a 
critical non-negative variable (Johnson et al. 1995). The related dataset consists of 25 
precipitation data (in inches) from Jug Bridge, Maryland (Folks and Chhikara 1978). 
The “Extreme maximum value” mechanism can provide a reasonable comprehension of 
the phenomenon. This conforms to a general statistical modelling of precipitation data 
that appeared recently in Vovoras and Tsokos (2009). They argue that, among the three 
extreme value distributions, the Fréchet is the most adequate for rainfall data since it is a 
heavy tailed distribution. 

3 Concluding remarks 

In this paper some generative mechanisms leading to the IW distribution are introduced. 
These mechanisms, on the basis of the knowledge of the “physics”, enable one to 
preliminarily choose the IW model as the main candidate to interpret the involved 
phenomenon, such as a disease, rather than exclusively on the basis of a routine 
goodness-of-fit analysis of field data. The proposed strategy makes more reliable the IW 
model identification compared to other “similar” models such as the IG and the LN ones. 
 
Table 1: Datasets used in the illustrative examples and the correlation coefficients ρ   

 Dataset Size Data ρ  
(a) Repair times 46n =  0.2  0.3  0.5  0.5  0.5  0.5 0.6  0.6  0.7  0.7  0.7  0.8  

0.8  1.0  1.0  1.0  1.0  1.1  1.3  1.5  1.5  1.5  1.5  2.0  
2.0  2.2  2.5  2.7  3.0  3.3  3.3  3.7  4.0  4.0  4.5  4.7  
5.0  5.4  5.4  7.0  7.5  8.8  9.0  10.3  22.0  24.5 

0.98 

(b) Carcinoma 11n =  167  238  296  324  351  372  374  404  541  560  943 0.98 
(c) Insects 20n =  3  5  6  7  8  9  10  10  12  15  15  18  19  20  22  25  

28  30  40  60 
0.97 

(d) Precipitation 25n =  1.01  1.11  1.13  1.15 1.16  1.17  1.17  1.20  1.52  1.54  
1.54  1.57  1.64  1.73  1.79  2.09  2.09  2.57  2.75  
2.93  3.19  3.54  3.57  5.11  5.62 

0.96 
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Table 2.  Kolmogorov-Smirnov test statistic nD  and corresponding p-value for each dataset using 
the Inverse Weibull, the Inverse Gaussian and the Lognormal models. 

   Inverse Weibull Inverse Gaussian Lognormal 
 Dataset Size nD  p-value nD  p-value nD  p-value 
(a) Repair Times 46n =  0.08 0.92 0.07 0.98 0.09 0.80 
(b) Carcinoma 11n =  0.16 0.93 0.17 0.93 0.16 0.93 
(c) Insects 20n =  0.13 0.90 0.10 0.99 0.09 0.99 
(d) Precipitation 25n =  0.16 0.93 0.15 0.67 0.14 0.66 

Table 3 Test statistic ( )1 nRML  and the p-value with 0 1:   vs  :   H IW H LN  

Acknowledgment 

This work has been financially supported by the project PRIN 2008 “Innovation in 
service quality management: statistical approach and application in some fields of 
national interest”, funded by the Italian Ministry of University and Research. 

References 

1. Chhikara, R. S. and Folks, L.: The Inverse Gaussian Distribution: theory, methodology, and 
applications. New York: Marcel Dekker, (1989) 

2. Dumonceaux, R. and Antle, C. E.: Discrimination between the Lognormal and the Weibull 
Distributions. Technometrics 15 923–926, (1973) 

3. Ebrahimi, N.: Estimation of two ordered Mean Residual Lifetime functions. Biometrics 49 
409–417, (1993) 

4. Erto, P.: Genesis, Properties and Identification of the Inverse Weibull Lifetime Model.  
Statistica Applicata 1 117–128. (in Italian), (1989) 

5. Folks, L. and Chhikara, R.S.: The Inverse Gaussian Distribution and Its Statistical 
Application-A Review. J RSS, 40 263–289, (1978) 

6. Jiang, R., Ji, P. and Xiao, X. Aging Property of unimodal Failure Rate Models. Reliability 
Engineering and System Safety 79 113–116, (2003) 

7. Johnson, N. L., Kotz, S. and  Balakrishnan, N.: Continuous Univariate Distributions. vol. 1 
and 2, New York: Wiley, (1995) 

8. Le Cam, L. and Neyman, J.: Probability Models and cancer. Amsterdam (1982) 
9. Lee, E. T.: Statistical Methods for Survival Data Analysis. (2nd ed.): Wiley, (1992) 
10. Sherif, Y.S., and Smith, M.L: First-Passage Time Distribution of Brownian Motion as a 

Reliability Model. IEEE Transaction of Reliability 29 425–426, (1980) 
11. Vilmos, P. and Kurucz, E.: Insect Immunity: Evolutionary Roots of The Mammalian Innate 

Immune System. Immunology Letters 62 59–66, (1998) 
12. Vovoras, D. and Tsokos, C.P.: Statistical Analysis and Modelling of Precipitation Data. 

Nonlinear Analysis: Theory, Methods & Applications 71 1169–1177, (2009) 

 Dataset Size  ( )1 nRML  p-value 

(a) Repair Times 46n =   0.639 0.999 
(b) Carcinoma 11n =   0.828 0.889 
(c) Insects 20n =   0.817 0.921 
(d) Precipitation 25n =   0.804 0.947 


