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Abstract Simultaneous estimation in nonlinear multivariate regression contexts is
a complex problem in inference. In this paper, we compare the generalized least
squares approach, GLS, with the well-known methodology by Beauchamp and Cor-
nell, B&C, and with the standard nonlinear least squares approach, NLS. In the first
part of the paper, we contrast B&C versus standard NLS highlighting, from the the-
oretical point of view, how a model specification error could affect the estimation.
A comprehensive simulation study is also performed in order to evaluate the effec-
tiveness of B&C versus standard NLS both under correct or misspecified models.
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1 Introduction
Multiple linear regression is a central issue in statistical relationships modelling. Un-
der weak conditions, ordinary least squares methodology (OLS) is usually applied.
Due to the Gauss-Markov theorem, generalized least squares (GLS) give rise to the
best linear unbiased estimator if observations are correlated with a known covari-
ance matrix and the error term has a zero mean ([1]). Similar results are well-known
for the multivariate case. Nevertheless, if the systematic relationships are nonlin-
ear, previous optimality does not apply due to intrinsic curvatures of the solution
locus. Following the suggestions of the GLS methodology, Beauchamp and Cornell
[2] introduced an asymptotic approach (here denoted as B&C) for the multivariate
nonlinear case when the corresponding covariance matrix is unknown.

Let us study a system with d nonlinear equations yi j = f j(xi j;ϑ) + εi j, i =
1,2, · · · ,n, j = 1,2, · · · ,d, where ϑ ∈ Rp is a common vector of parameters with
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p << n. In vector form we can write the model as follows,

y = f (ϑ)+ ε, y, f (·),ε ∈ Rnd , (1)

where y = (y11, . . . ,yn1,y12, . . . ,yn2, . . . ,y1d , . . . ,ynd)
′ and the elements of f (ϑ) and

ε are arranged consequently. We assume ε ∼Nnd(0,Ω), where Ω = Σ ⊗ In, and ⊗
denotes the Kronecker product. In other words, for each component of the d-variate
response, we consider zero mean, homoscedastic and uncorrelated errors. Both the
requirement of normality and the Kronecker structure imposed on Ω are necessary
to the B&C approach, while of course they are not required for the NLS method. In
the rest of the paper, we will compare the two methods both in the case of a correct
(1) and wrong (2) model specification,

y = g(ϑ)+u, (2)

where g(ϑ) = f (ϑ)−ξ (ϑ), u = ξ (ϑ)+ ε and, in general, ξ (ϑ) 6= 0, a.e..

2 Estimation methods: GLS, B&C, NLS
If the matrix Σ is known, we can apply the standard GLS approach, that mini-
mizes, with respect to ϑ the Minkowski metric, f δ

2
GLS(ϑ) = [y− f (ϑ)]′ (Σ−1 ⊗

In) [y− f (ϑ)] . Whenever Σ is unknown, [2] suggest to substitute Σ with a consis-
tent estimate obtained from the residuals of marginal models estimated with direct
NLS. In the rest of the paper, we will denote by B&C this two-stage procedure (for
details about Σ estimation see also [3]). The ϑ estimate minimizing the GLS is
asymptotically the same optimizing

f δ
2
BC(ϑ) = [y− f (ϑ)]′(Σ̂−1⊗ In)[y− f (ϑ)]. (3)

Our aim is to compare the B&C approach with NLS method that ignores the covari-
ance structure minimizing the Euclidean metric f δ

2
S(ϑ) = [y− f (ϑ)]′[y− f (ϑ)].

Let us denote f ϑ̂ S the direct NLS estimate, and f ϑ̂ BC the B&C estimate.

3 Estimation methods in case of uncorrect model specification
The B&C approach starting from model (1) leads to a consistent estimate of Σ ⊗ In.
Conversely, if the wrong model (2) is specified, through the first step residuals, we
obtain a consistent estimate of E(uu′) = Σ ⊗ In + ξ (ϑ)ξ (ϑ)′ = Φ . If we denote
by Φ̂ the estimate of the covariance structure obtained with model (2), the B&C
approach leads to the minimization, with respect to ϑ , of the function

gδ
2
BC(ϑ) = [y−g(ϑ)]′Φ̂−1[y−g(ϑ)].

The optimal value, gϑ̂BC, is asymptotically the same that minimizes
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gδ
2
GLS(ϑ) = [y−g(ϑ)]′Φ−1[y−g(ϑ)] = [y− f (ϑ)]′(Σ−1⊗ In)[y− f (ϑ)]+

+ 2ξ (ϑ)′(Σ−1⊗ In)[y− f (ϑ)]++ξ (ϑ)′(Σ−1⊗ In)ξ (θ)+

− 1
1+ξ (θ)′(Σ−1⊗ In)ξ (θ)

{(
ξ (θ)′(Σ−1⊗ In)[y− f (ϑ)]

)2
+ (4)

+ 2ξ (ϑ)′(Σ−1⊗ In)ξ (θ)ξ (θ)
′(Σ−1⊗ In)[y− f (ϑ)]+

(
ξ (θ)′(Σ−1⊗ In)ξ (θ)

)2
}
.

From Eq. (4), we see that the function gδ
2
GLS(ϑ) differs from f δ

2
GLS(ϑ) and, in par-

ticular, there are some “interaction” terms between ξ (ϑ), which is the specification
error, and the actual covariance structure Σ . At the first step in the application of
the B&C procedure, the estimate Φ̂ misunderstands the variability of the stochastic
component, Σ , for the specification error, ξ (ϑ), modifying the objective function.

Conversely, if we ignore the covariance structure, we minimize

gδ
2
S(ϑ) = [y− f (ϑ)]′[y− f (ϑ)]+2ξ (ϑ)′[y− f (ϑ)]+ξ (ϑ)′ξ (ϑ). (5)

In other words, we aim at evaluating to what extent the B&C approach really gives
us an advantage with respct to the simpler NLS method.

4 A simulation study
Starting from the example originally proposed by [2] (and later by [3]), we consider
as system f (true model) the following compartmental model with two response
components, d=2, and three free parameters, p=3,

f1(ϑ) = ϑ1e−ϑ2x +(1−ϑ1)e−ϑ3x

f2(ϑ) = 1− (ϑ1 +ϑ4)e−ϑ2x +(ϑ1 +ϑ4−1)e−ϑ3x

where ϑ4 =
(ϑ3−ϑ2)ϑ1(1−ϑ1)
(ϑ3−ϑ2)ϑ1+ϑ2

. The true ϑ value, was selected as ϑo =(0.047, 0.002,
0.066). After choosing different specifications for Σ matrix, for each of them 100
values for the vector ε were generated, leading to corresponding response vectors,
y. Each of them was used to fit the regression model f . In order to assess the effect
of a wrong specification, 5 different g models were also fitted. In detail:

g1 =

{
αx2 +βx+ γ d=1
−αx2−βx+ζ d=2

, g2(ϑ) = f (ϑ)|ϑ1=ϑ3 , g3(ϑ) = f (ϑ)|ϑ1=ϑ2 ,

g4(ϑ) = f (ϑo)+F(ϑo)(ϑ −ϑo), g5(ϑ) = f (ϑ ∗o )+F(ϑ ∗o )(ϑ −ϑ ∗o )

where ϑ ∗o =(0.0423, 0.0022, 0.0726). In other words, g1 represents an interpolating
polynomial, g2 and g3 are restricted versions of the correct f function (g2 imposes a
plausible link, while g3 sets a strong constraint). Finally, g4 and g5 are first order ap-
proximations of f evaluated at the true ϑo point and at a close ϑ ∗o point. In order to
compare the two procedures we had to choose a sensible criterion. Since the differ-
ent g models did not depend upon the same parameter set, we focused on a measure
pertaining to a common element, i.e., the predicted response, ŷ. Due to Eq. (4) we
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feared that gϑ̂ BC could be heavily affected by the confounding between Σ and ξ (ϑ),

moving gϑ̂ BC far from the optimal value (and thus moving gŷBC = g(gϑ̂ BC) far from
the observed value y). For this reason we evaluated ρ2

y,ŷ, the squared Pearson cor-
relation coefficient between vector y (observed values) and vector ŷ (fitted values
with both procedures). In Figure 1 we compare for each y vector, the ρ2 coeffi-
cients for B&C and NLS fitted values. We observe that when the correct model is
specified ( f ), or when the specification error is narrow (g4, g5), the two estimation
methods provide very similar values. Conversely, alternative misspecification errors
give rise to mild (g2) or very strong (g1, g3) preference towards the NLS procedure.
Analogous patterns can be observed for different Σ configurations. These features
are even more evident when the two response components have a different number
of observations. As a concluding remark, and within the limitations of the present
simulation study, our opinion is that whenever the specification of the model used
cannot be fully trusted, the B&C method might be very misleading and due to its
robustness the NLS approach should be preferred.
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Fig. 1 Comparison between ρ2 coefficients for B&C and NLS fitted values for alternative model
specifications (σ11 = 0.05, σ22 = 0.03,σ12 = −0.6σ11σ22). The red line of each sub-plot is the
bisector of the first quadrant.


