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Abstract The Zero-Inflated Poisson (ZIP) distribution, typically assumed for mod-
eling count data with excess of zeros, assumes that with probability p the only pos-
sible observation is zero, and with probability 1− p a Poisson(ψ) random variable
is observed. Both the probability p and the mean ψ may depend on covariates. In
this paper we discuss and apply Bayesian inference based on matching priors and
on higher-order asymptotics to perform accurate inference on ψ only, even for small
sample sizes.

Key words: Asymptotic expansions, Count data, Matching prior, Modified profile
likelihood, Nuisance parameter, Tail area probability, ZIP regression.

1 Introduction

Count data often show more zeros than what would be expected from a Poisson
distribution. ZIP models (and ZIP regression models) represents a useful class of
models for such data. In recent years there has been considerable interest in these
models in various application areas (see [6]). Usually, statistical inference is based
on Expectation-Maximization (see, e.g., [4]) or on maximum likelihood. On the
contrary, Bayesian inference for ZIP models remains relatively unexplored.

In this paper we discuss some recent advances in Bayesian inference based on
higher-order asymptotics (see, e.g., [5] and [2]) and matching priors (see [7]) to ZIP
models to perform accurate inference on the parameter of interest ψ , even for small
sample sizes. We also extend the problem to the ZIP regression model. The pro-
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posed approach avoids elicitation on the nuisance parameters and multidimensional
integral computations. The accuracy of the proposed methodology is illustrated both
by numerical studies and by a real-life dataset concerning clinical studies.

The paper is organized as follows. In Section 2, we review some recent advances
on Bayesian inference on ψ . In Section 3 the ZIP model, both in the scalar and
regression context, is considered. Section 4 illustrates the numerical studies along
with an application to a real dataset.

2 Background

Let y = (y1, . . . ,yn) be a random sample of size n from a random variable Y ∼
p(y;θ), with θ = (ψ,λ ) ∈Θ ⊂ Rd , ψ the interest parameter and λ the nuisance
parameter (dim(ψ) = p, dim(λ ) = q and p+ q = d). Let L(θ) = L(ψ,λ ) be the
likelihood, `(θ) = `(ψ,λ ) the loglikelihood, θ̂ = (ψ̂, λ̂ ) the maximum likelihood
estimate (MLE) of θ . Moreover, let λ̂ψ be the constrained MLE of λ and let θ̂ψ =

(ψ, λ̂ψ). Given the likelihood function and a prior π(ψ,λ ), Bayesian inference on
ψ is based on

π(ψ|y) ∝

∫
L(ψ,λ )π(ψ,λ )dλ . (1)

The computation of (1) requires the elicitation of θ and multidimensional numerical
integration. These may be avoided using recent advances in Bayesian inference ([7]
and [9]) where λ is eliminated through a suitable pseudo-likelihood of ψ only, with
properties similar to a genuine likelihood. In this respect, Bayesian inference on ψ

may be based on
πM(ψ|y) ∝ π(ψ)LM(ψ), (2)

where LM(ψ) is the modified profile likelihood of [1] and π(ψ) is a suitable prior
on ψ only. Let iψψ(θ), iψλ (θ) and iλλ (θ) be the blocks of the expected information
i(θ). For scalar ψ , it can be shown that (2) based on the matching prior

π
∗(ψ) ∝ iψψ.λ (θ̂ψ)

1/2, (3)

where iψψ.λ (θ) = iψψ(θ)− iψλ (θ)iλλ (θ)
−1iλψ(θ) is the partial information, is a

genuine posterior distribution (see [7]). When ψ is multidimensional, a matching
prior for ψ only to be used in (2) is not available. Nevertheless, a Jeffreys’ type prior
of the form π∗(ψ) ∝ |iψψ.λ (θ̂ψ)|1/2 may be considered (see [8]) in (2). Applications
of the resulting posterior are not available at present in the statistical literature and
will be discussed in this contribution.



Modern Bayesian Inference in Zero-Inflated Poisson Models 3

3 Application to ZIP models

ZIP model. Consider a random sample of size n from Y ∼ ZIP(ψ, p). It is of interest
to make inference on ψ . The probability density function of Y is given by

p(y;ψ,λ ) = pa(y)+(1− p)
e−ψ ψy

y!
, y = 0,1, . . . , ψ > 0,

1
1− eψ

< p < 1, (4)

where a = a(y) is equal to 1 if y = 0, and is equal to 0 if y > 0. Let us reparametrize
the model with τ = (ψ,λ ), with λ = λ (ψ, p) = 1−p

1−1/(1−eψ ) , so that 0 < λ < 1.
This parametrization may be useful because with (ψ,λ ) the model has separable
parameters. The likelihood for (ψ,λ ) is

L(ψ,λ ) = (1−λ )s0
λ

n−s0 ψs

(eψ −1)n−s0 = L(λ )L(ψ), (5)

with s0 = ∑
n
i=1 ai, s0 ≤ n and s = ∑

n
i=1(1−ai)yi. Since L(τ) = L(ψ)L(λ ), inference

on ψ should be carried out using L(ψ) = ψs/(eψ −1)n−s0. Moreover, we have that
L(ψ) = LP(ψ) = LM(ψ). Note that L(ψ) is equal to the likelihood function derived
from the truncated Poisson distribution (see [10]). It can be shown that the matching
prior (3) for ψ is

π
∗(ψ) = iψψ.λ (τ̂ψ)

1/2
∝

[
eψ(eψ −1)−ψλ̂eψ

ψ(eψ −1)2

]1/2

, (6)

and the posterior distribution (2) for ψ is thus

π
∗(ψ|s,s0) ∝

ψs−1/2eψ/2(eψ −1− λ̂ψ)1/2

(eψ −1)n+1−s0 . (7)

Regression model. Now, let us assume Yi ∼ ZIP(ψi,λi), for i = 1, . . . ,n, where ψi
and λi are modelled by the following common link functions (see, e.g., [4]) ψi =
eBi β and λi = eGi γ/(1+ eGi γ), where B and G are non random design matrices,
β is the vector of interest parameters and γ is vector of nuisance parameters. The
likelihood for β is independent from L(γ) and LM(β ) = L(β ). Since dim(β ) > 1
a matching prior for β is not easily available. However, using results in [8] the
Jeffreys’-type prior for β may be considered, which is given by

π
∗(β ) =

∣∣∣∣∣∑i

{
Bi eBi β eGi γ̂ exp(eBi β )

1+ eBi β + exp(eBi β )

(1+ eGi γ̂)
[
exp(eBi β )−1

]2
}∣∣∣∣∣

1/2

. (8)

In this case the posterior distribution (2) is given by the prior (8) times L(β ).



4 Erlis Ruli and Laura Ventura

4 Numerical studies and real data application

We investigate the empirical coverage of Bayesian credible sets obtained from (7)
and (1) based on π(ψ) ∼ Ga(a,b) with a = b = 0.01 and λ ∼U(0,1). The poste-
riors (1) and (7) can be approximated and then integrated to give marginal tail area
probabilities (see [5] and [9] for details).
Numerical studies. We analysed the behaviour of (7) and (1) under the ZIP model
through 50.000 Monte Carlo trials. In particular, using marginal tail area proba-
bilities obtained from (7) and (1) we compare the empirical frequentist coverage
for 95% HPD sets and the lower and upper 5% tail. For a sample of size n = 10
the matching prior achieves coverages of 0.9422, 0.0343 and 0.0234, respec-
tively. The same quantities for the Gamma-Uniform prior, are 0.9394, 0.0429
and 0.0117. The matching prior achieves better coverage probabilities, but the dif-
ference in performance between the two priors is more evident when left and right
tail coverages are compared.
Example. Now we apply this methodology to our dataset (see [3]). The variables
considered are the number of spots or silica particles (NS) and the number of posi-
tive zones (NPZ) in which there is at least one spot in the lung tissues. We obtained
estimates of ψ along with its 95% HPD, under the ZIP model, with the matching
prior and with the gamma-uniform prior. We estimate ψ also by maximising its
profile likelihood. Both priors compared with the MLEs give very similar results.

As a final remark, we note that simulation studies and related application with
real data for the ZIP regression model are under investigation.
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