Modeling nonignorable missingness in
multidimensional latent class IRT models
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Abstract A relevant problem in applications of Item Response Theory (IRT) models
is the presence of nonignorable missing responses. We propose a multidimensional
latent class IRT model in which the missingness mechanism is driven by a latent
variable (propensity to answer) correlated with the latent variable for the ability (or
abilities) measured by the test items. These two latent variables are assumed to have
a joint discrete distribution. This assumption is convenient both from the compu-
tational point of view and for the decisional process, since individuals are classi-
fied in homogeneous latent classes which may be associated to the same treatment.
Moreover, this assumption avoids parametric formulations for the distribution of the
latent variables, giving rise to a semiparametric model. The proposed approach is
illustrated through an application to data coming from a Students’ Entry Test for the
admission to the courses in Economics in an Italian University.
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1 Introduction

A relevant problem in applications of Item Response Theory (IRT) models is due to
missing responses to some items. Indeed, ignorable missing responses do not rep-
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resent any particular problem, whereas nonignorable missing response need special
attention to avoid wrong inferential conclusions [5]. A typical example of nonignor-
able missing responses is observed in the context of ability tests which, in order to
avoid guessing, penalize a wrong item response by a greater extent with respect to
a missing response.

The main literature [4] treats the problem of nonignorable missing responses by
assuming that the observed item responses depend both on the latent ability (or abil-
ities) intended to be measured by the test and on another latent variable which is
identified as the propensity to answer. Usually, a parametric class of multidimen-
sional IRT models is adopted, which is based on the multivariate Normal distribu-
tion for the two (or more) latent variables. Recently, an alternative nonparametric
approach based on the conditional maximum likelihood estimation has been pro-
posed by specifying the multidimensional IRT model according to the Rasch as-
sumptions [2]. The main drawback is that the conditional approach does not allow
us to measure the correlation between latent variables; moreover, its use is limited
to data coherent with the Rasch paradigm.

Our aim is to propose the use of an alternative multidimensional IRT model based
on the assumption of discreteness of the latent variables [1], so that the missing pro-
cess may be modeled in a semiparametric way. Our proposal presents several ad-
vantages with respect to the parametric approach based on Normal latent variables.
Firstly, it is more flexible because it does not introduce any restrictive assumption
about the distribution of latent variables. Secondly, it allows to skip the well-known
problem of the intractability of multidimensional integrals which characterizes the
marginal log-likelihood function of a continuous multidimensional IRT model. Fi-
nally, detecting homogenous classes of individuals is convenient for certain deci-
sional processes, because individuals in the same class may be associated to the
same decision (e.g., admitted, admitted with reserve, not admitted).

The remainder of the paper is organized as follows. In Section 2 we describe the
class of multidimensional latent class (LC) IRT models adopted to allow for non-
ingorale missing responses. In Section 3 we illustrate the proposed class of models
through an application to data arising from the Students’ Entry Test for the admis-
sion to the Economics courses of the University of Florence (Italy).

2 The proposed model

Given a set of J binary items for the measurement of s distinct student’s abilities, let
O =(0y,...,0,,1) be the vector of latent variables that drives the response process
and let 8 = (0,...,0,.1) denote one of its possible realizations. In particular, ®,
is the latent variable for the propensity to answer and ©;, ..., 0, are those for the
student’s abilities measured by the test. The random vector @ is assumed to have a
discrete distribution with k support points, denoted by &, ..., &,, and probabilities
Ty, M, Withm, =p(@=E&_.),c=1,... k.
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In order to model the response process, for a generic examinee we denote by R;
the binary variable equal to 1 if this examinee provides a response to item j and
to 0 otherwise, with j = 1,...,J. Moreover, we introduce the symbol X;f to denote
the “true” binary response to item j that is observable only if R; = 1, and in this
case equal to the manifest binary variable X;, and unobservable if R; = 0. Then, we
formulate a local-independence assumption by requiring that the pairs of variables
(R ],Xj*) j=1,...,J, are conditionally independent given the latent vector @. More-
over, we assume that R; and XJ* are conditionally independent given @; and Oy, 1,
where d; indicates the ab111ty measured by j-th item. Finally, for the conditional dlS-
trlbutlon of every R; and X7, given the corresponding latent variables, we assume the
following two-parameter logistic parametrization. Let p;(6;) = p(R; = 1|©; = 6,)
and p}‘-(@de) = p(Xj* = 1\@dj+1 = Odj+1). We have that:
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where y; and 7 are discrimination parameters and f3; and 3} are difficulty parame-
ters. Equations (1) and (2) define an (s + 1)-dimensional latent class IRT model as
described in [1].

In order to estimate the model on the basis of the observed responses provided by
a sample of n examinees, we need to obtain the manifest distribution of these data.
For every subject i we observe the vector r; = (r;,..., 1), where r; j is the value of
Rj, and X; = (xj1,...,xis), where x;; = 0,1 is the realization of XJ* when 7;; =1 (the
response is provided) and it is let equal to an arbitrary value otherwise. The above
assumptions implies that the manifest distribution may be expressed as
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In order to estimate the vector ] of the model parameters, the log-likelihood £(n) =
Y log p(r;,x;) is maximized through the EM algorithm [3].

3 Application to Students’ Entry Test: main results

A constrained version of the proposed model, with y; = Vj =1,j=1,...,J, was
applied for the analysis of data arising from the Student’s Entry Test to the courses
in Economics administered to 1264 students in September 2011 at the University
of Florence. The test measures three latent variables: Logic (©,, 13 items), Math-
ematics (03, 13 items), and Verbal Comprehension (@, 10 items). All items are
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of multiple choice type, with one correct answer and four distractors, and they are
polytomously scored, being 1 for a correct response, -0.25 for a wrong response,
and O for a missing response. The scoring system is communicated to the candi-
dates before the test starting.

The estimated support points é . (centered at 0) and probabilities 7. are shown in
Table 1 for the four-dimensional LC IRT model with k = 3 and k = 4 classes.

Table 1 Estimated support points (é o), weights (%), and average probabilities to answer given the

class (5(§,)) fork=3 and k =4.

k=3 k=4
c=1 ¢=2 c¢=3|c=1 ¢=2 c¢=3 c=4
&1 |0.2845 0.3335 -0.8004|0.1564 0.1162 -0.8585 0.4495
écz 1.1107 -1.1095 0.1743{1.6900 -1.9835 0.0707 -0.1881
écS 1.0611 -0.7073 -0.3159{1.5907 -1.0928 -0.3217 -0.2498

& [0.6158 -1.3336  1.0796(1.3921 -1.9542 1.0163 -0.6772
e 0.3381 0.3824 0.2795(0.2196 0.1614 0.2533 0.3657

p5(§,)|0.8298 0.8360 0.6484(0.8131 0.8074 0.6377 0.8507

With reference to the model with k = 3 classes, we observe that class 1 includes
students with the highest ability in Logic and Mathematics and a good level of Ver-
bal Comprehension (33.81%), whereas students in class 2 present the worst levels
for all the three abilities (38.24%). Moreover, class 3 collects students with the high-
est performance in Verbal Comprehension, but with some deficiencies in Mathemat-
ics (27.95%). Some differences turn up with k = 4, being identified a further class
(class 4) that represents students with scores under the average for all the three abil-
ities (36.57%). Finally, the propensity to answer (1) is quite high for all classes
except than for class 3 (both for k = 3 and k = 4). In fact, for these classes the

A

average probability to answer, p(& ), is greater than 80%.

As concerns further developments of the proposed approach, we intend to extend
the model so as to allow the latent class weights (and then the ability levels) to
depend on individual covariates (e.g., type of high school diploma).
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