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Abstract Multivariate spatio-temporal data arise from the observation of a set of
measurements in different times on a sample of spatially correlated locations. They
can be arranged in a three-way data structure characterized by rows, columns and
layers. In this perspective each observed statistical unit is a matrix of observations
instead of the conventional p-dimensional vector. In this work we propose model
based clustering for this wide class of continuous three-way data by a general mix-
ture model with components modelled by matrix-variate Gaussian distributions. The
effectiveness of the proposed method is illustrated on multivariate crime data col-
lected on the Italian provinces in the years 2005-2009.
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1 Introduction

Multivariate spatio-temporal data occur in different scientific fields from the obser-
vation of multiple measurements in repeated situations (or times) on spatially cor-
related locations. Due to their complexity they cannot be arranged in a conventional
matrix of observations but they may be represented in a three-way data structure,
where the, say n, locations are represented in rows, a set of p variables are indexed
in columns and the different, say r, times are the layers.

We focus on the problem of clustering the n spatially correlated locations. By
denoting with j the generic observation (where j = 1, . . . ,n), we have an r× p ob-
served matrix, Yj, for each statistical unit. Thus, the challenge of the cluster analysis
is to suitably classify realizations coming from random matrices (instead of the con-
ventional random univariate or p-variate variables) in some k unknown groups, with
k < n. Considering the peculiarity of the data, a clustering strategy should address
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the joint objectives of modeling the spatial correlation between the observations
(since units are not i.i.d.), defining two different covariance matrices for describing
the variable correlations separately from the temporal (or spatial) correlations and
modeling possible temporal correlation structures.

Different solutions for clustering three-way data have been proposed in the statis-
tical literature. Gordon and Vichi (1998) and Vichi (1999) have developed a strategy
based on a least-square approach, which has been recently extended in order to com-
bine clustering and data reduction (Vichi and Rocci, 2007). These methodologies do
not require an explicit distributional assumption on the clusters and therefore they
do not allow one to explicitly model the correlation structures along the two modes
of interest. In a model-based perspective, Basford and Mclachlan (1985) adapted
the Gaussian mixture likelihood approach to three-way data. In this approach they
assumed that the component mean vectors might vary between groups and one of
the two modes (for instance between the variables). On the contrary, the within com-
ponent covariance matrices are not taken to depend on the modes. This would imply
that the correlations between and within variables and times are not explicitly mod-
eled and this represents the main drawback of the method. In a different perspective,
the Dirichlet process mixture models (Gelfand et al., 2005) provide an interesting
approach for cluster analysis of multivariate spatial data, although they have not
been specifically developed for three-way data.

More recently, Mixtures of Matrix Normal distributions (MMN) have been pro-
posed and investigated (Viroli, 2011) with the aim of taking into account the
full information on the two modes, separately but simultaneously. This purpose
is achieved by modeling the distribution of the observed matrices according to a
matrix-variate normal distribution (Dutilleul, 1999). This approach represents a very
general framework that includes, as special cases, both the conventional mixtures of
multivariate normals and the variant proposed by Basford and Mclachlan (1985) for
the analysis of three-way data.

In this work we propose a generalized MMN model (GMMN) for properly mod-
elling multivariate spatio-temporal data in a Bayesian framework. This has the ad-
vantage of extending MMN in order to model spatially correlated observations and
temporal structured covariance matrices. Model inference is solved via the Gibbs
sampler (Geman and Geman, 1984).

2 Generalized mixture of matrix-normals

Let Y1, . . . ,Yn be the dependent location matrices of dimension r× p. They are as-
sumed to belong to a set k of sub-populations or groups of unknown proportions.
In a general perspective, we consider the observed sample of n matrices as a set of
conditionally independent and not identically distributed observations coming from
the mixture model
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f (Yj|k,π,Θ 1, . . . ,Θ k) =
k

∑
i=1

πi jM(r×p)(Yj;Θ i), (1)

where j = 1, . . . ,n and Θ i denotes the set of parameters of each component distribu-
tion. The weights π = [πi j]i=1,...,k; j=1,...,n satisfy πi j > 0 with ∑

k
i=1 πi j = 1 for all j.

They vary with j in order to take into account the spatial correlation. This solution
is inspired by the spatial mixture formulation for Poisson distributed two-way data
proposed by Fernández and Green (2002). It consists of introducing k independent
additional latent variables to capture spatial correlation. The weights are a function
of these latent variables via the logistic transform so as to incorporate the spatial
dependence in the mixture model.

The distribution of the generic i-th component should allow for a separate treat-
ment of the variability of the second and third mode, in order to model possible
auto-correlated temporal covariance structures. To this purpose the i-th density is
assumed to be a matrix-variate normal distribution. More specifically, the density of
the r× p matrix of observations, Yj, is the matrix normal distribution of parameters
Θ i = {Mi,Φi,Ωi}:

M(r×p)(Yj;Mi,Φi,Ωi) = (2π)−
rp
2 |Φi|−

p
2 |Ωi|−

r
2

exp
{
−1

2
tr
(

Φ
−1
i (Yj−Mi)Ω

−1
i (Yj−Mi)

>
)}

(2)

where Mi is an r× p matrix of means; Φi an r× r covariance matrix containing
the variances and covariances between the r entities within the third mode; and
Ωi is a p× p covariance matrix containing the variance and covariances of the p
variables (or times) indexed by the second mode. The Kronecker product of the
two covariance matrices Σi = Φi⊗Ωi contains the pr× pr covariances between the
entities of the two modes.

Within each sub-population i, Φi is assumed to be a temporal structured covari-
ance matrix. There are several popular correlation structures, including the com-
pound symmetry structure, the first-order autoregressive AR(1) structure or the
Toeplitz structure. In this work we confine attention to the AR(1) structure for all
the Φi covariance matrices. The other common types of temporal structures could be
considered and adapted to the proposed setting with little mathematical treatment. In
our setting, within each component i, the covariance matrix Φi can be decomposed
as

Φi(βi) = (σiIr)Ri(βi)(σiIr), (3)

where Ri(βi) is a correlation matrix having the AR(1) structure:

Ri(βi) = [βi]
|u−v| with u,v = 1, . . . ,r.
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2.1 Hierarchical formulation of GMMN

We introduce n independent latent variables, {z1, . . . ,zn} called allocation variables,
that identify the sub-population (or group) from which each observed matrix comes.
More precisely, z j (with j = 1, . . . ,n) is a vector of dimension k which assumes value
equal to 1 if the observation belongs to one of the k sub-populations and 0 elsewhere.
Therefore z j follows a multinomial distribution from which f (zi j = 1|π,k) = πi j. In
order to deal with correlated observations, we assume that Y1, . . . ,Yn are independent
given the set of latent variables z = {z1, . . . ,zn}.

The conditional density of the random matrix, Yj, given the allocation variable,
z j, is the matrix-variate normal distribution in the form:

f (Yj|z j,Θ ,k) =
k

∏
i=1

[
M(r×p)(Yj;Mi,Φi,Ωi)

]zi j . (4)

Given k and the set of parameters π and Θ , the complete joint distribution of Y
and z can be decomposed into the product of two conditional densities

f (Y,z|π,Θ ,k) = f (Y |z,Θ ,k) f (z|π,k). (5)

We allow additional layers to the hierarchy by adding a set of hyperparameters ω for
Θ and π . In so doing we formulate the estimation problem in a Bayesian framework.
In the GMMN model the distribution of interest is the posterior distribution of the
allocation variables, of the parameters and hyperparameters (for fixed k) given the
observed data Y . By using formulation (5) it can be expressed as

f (z,π,Θ ,ω,k|Y ) ∝ f (Y |z,Θ ,k) f (z|π,k) f (π|ω,k) f (Θ |ω,k) f (ω|k), (6)

where f (π|ω,k), f (Θ |ω,k) and f (ω|k) are the prior distributions of parameters and
hyperparameters.

2.2 Prior formulation and hyperparameters

In this setting the set of hyper-parameters is ω =(β1, . . . ,βk,σ1, . . . ,σk,ρ,x1, . . . ,xk,ζ )
>,

where xi (with i = 1, . . . ,k) are spatial latent variables. Each xi is a Markov random
field with density function:

f (xi|ζ ) = (2π)−n/2
n

∏
j=1

(1+ζ υ j)
1/2 exp

[
−1

2

(
ζ ∑

j∼ j′
(xi j− xi j′)

2 +
n

∑
j=1

x2
j

)]
(7)

where υ1, . . . ,υn denote the eigenvalues of a spatial matrix which contains the num-
ber of neighbours of each location in the diagonal, the value -1 if two locations are
neighbours and zero otherwise. ∑ j∼ j′ denotes the sum over all pairs of neighbours
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with each pair counted only once. The hyperparameter ζ is a hyperparameter with
uniform prior distribution between 0 and ζmax. When ζ = 0 there is independence
between locations, as ζ increases neighbouring locations have ever more similar
values of the spatial latent variable x. Given x1, . . . ,xk and ζ the weights for location
j take the form

πi j =
exi j

∑
k
h=1 exh j

.

We consider non-informative prior distributions for each βi given by uniform
distributions in [-1,1]. The prior distribution for σ

−1
i is a Gamma distribution with

parameters a and b, for all i, with i = 1, . . . ,k. Being a deterministic function of
βi and σi, there is no prior distribution for Φi. It is worth noting that, by fixing
βi = β and σi = σ , a GMMN model with homoscedastic temporal components
could be estimated. Finally, the role of ρ is to parameterize the prior distributions of
Ωi for all i. We can choose non-informative prior distributions for ρ and the model
parameters. More precisely:

Mi ∼M(r×p)(M0,Φ0,Ω0) (8)

Ω
−1
i |ρ ∼ Wp

(
2ζ ,(2ρ)−1) (9)

ρ ∼ Wp
(
2l,(2m)−1) (10)

(11)

for i = 1, . . . ,k. In the previous expressions M(r×p) denotes the matrix-variate nor-
mal distribution of order r× p and W denotes the multivariate Wishart distribution.
Moreover, Φ0 is a r×r matrix, ρ , Ω0 and m are p× p matrices, M0 is an r× p matrix
and ζ and l are scalars.

With this setting the full conditionals are proportional to known distribution and
a Gibbs sampler algorithm can be applied. The full conditional for z is

f (zi j = 1| . . .) ∝ πi jM(r×p)(Yj;Mi,Φi,Ωi).

The posterior distributions of x1, . . . ,xk and ζ are

f (x j| . . .) ∝

k

∏
i=1

{[
exi j

∑
k
h=1 exh j

]zi j

N

(
ζ ∑ j∼ j′ xi j′

1+ζ υ j
,

1
1+ζ υ j

)}
,

and

f (ζ | . . .) ∝

(
n

∏
j=1

(1+ζ υ j)
k/2

)
exp

[
−ζ

2

k

∑
i=1

∑
j∼ j′

(xi j− xi j′)
2

]
.

The analytical derivation of full conditional of βi is

f (βi| . . .) ∝
1
2
(1−β

2
i )

1
2 (r−1)pni exp

[
−1

2
σ
−1
i

1−β 2
i

(
tr(Pi)−βitr(C1Pi)+β

2
i tr(C2Pi)

)]
,
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where Pi = ∑ j:z j=i(Yj −Mi)Ω
−1
i (Yj −Mi)

>, C1 is a tridiagonal matrix with 0 on
the diagonal and 1 on the lower and upper diagonals and C2 = diag(0,1, . . . ,1,0).
This expression is not a known distribution but realizations from it can be generated
according to a self-normalized importance sampling scheme.

The full conditional for σi can be obtained as follows:

f (σi| . . .) ∝ (σ−2
i )

rp
2 ni exp

[
−1

2
σ
−2
i tr

(
Ri(βi)

−1Pi
)]

(σ−2
i )a−1 exp[−bσ

−2
i ]

= (σ−2
i )

rp
2 ni+a−1 exp

[
−1

2
tr
(
Ri(βi)

−1Pi +b
)

σ
−2
i

]
,

from which it follows

f (σ−1
i | . . .) ∼ G

(
a+

rp
2

ni,b+
1
2

tr(Ri(βi)
−1Pi)

)
,

where G represents the Gamma distribution. Finally, the other posterior distributions
can be analytically derived by combining equation (6) with the priors previously
described:

vec(Mi)| . . .∼Nrp
(
ϒ
−1

ξ ,ϒ−1)
Ω
−1
i | . . .∼Wp

2ρ + rni,

[
2ζ + ∑

j:z j=i
(Yj−Mi)

>
Φ
−1
i (Yj−Mi)

]−1


ρ| . . .∼Wp

2l +2kζ ,

[
2m+2

k

∑
i=1

Ω
−1
i

]−1


π| . . .∼D(ρ +n1, . . . ,ρ +nk)

where ni = ∑
n
j=1 zi j, ξ = (Φi⊗Ωi)

−1
∑

n
j=1 vec(Yj)zi j +(Φ0⊗Ω0)

−1vec(M0) and
ϒ = ni(Φi⊗Ωi)

−1 +(Φ0⊗Ω0).

2.3 Example: Crime in the 103 Italian provinces

Every year, an Italian financial newspaper, Il Sole 24 Ore, analyzes the quality of
life in the 103 provinces of Italy through several indicators collected in different
thematic areas (www.ilsole24ore.com). This data set consists of p = 4 mea-
surements on crime in the Italian provinces collected and published in r = 5 years,
from 2005 to 2009. The p = 4 indicators are: home-invasion robberies (per 100,000
residents), teenage crime rate (per 1,000 residents), the number of reported rob-
beries (per 100,000 residents) and rate of muggings and pickpockets (per 100,000
residents). These are not violent crime measurements but they could still offer a use-
ful indication on the safety level in the different geographical areas. Since Italy is a
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complex and heterogeneous country characterized by a deep income inequality be-
tween the dynamic, industrialized North and the less developed, agricultural-based
Centre-South, we expect a deep territorial heterogeneity in terms of safety and qual-
ity of life.

The aim of this study is to cluster the Italian provinces on the basis of the four
crime indicators taking into account the entire period of the five years 2005-2009.

We have modelled the territorial dependence through priors on the mixture
weights and the temporal correlations among the five years with an AR(1) structure.
What differentiates our cluster analysis from a classification on a single year only is
the fact that we model simultaneously the correlations of variables within and be-
tween the different years. In fact it could easily happen that clustering of provinces
observed in 2005 could be quite different from that obtained in 2009, since in the
considered years the political action to reduce these criminal activities could have
achieved different results across the provinces.

home robberies teenage crime robberies muggings
i = 1

2005 239.02 16.84 33.24 200.70
2006 263.27 19.37 34.34 196.97
2007 283.84 17.03 35.11 215.85
2008 327.22 17.45 37.91 248.82
2009 282.23 18.22 34.26 202.91

i = 2
2005 161.00 9.36 30.85 61.94
2006 166.29 10.00 29.22 74.03
2007 197.34 9.77 29.69 86.77
2008 226.33 9.91 33.01 92.10
2009 209.35 10.76 29.61 77.18

i = 3
2005 216.66 16.48 106.34 481.76
2006 242.83 21.35 104.06 546.84
2007 294.87 20.57 119.53 689.74
2008 322.60 20.16 129.16 676.33
2009 274.54 19.34 112.57 494.50

i = 4
2005 138.48 4.36 351.25 220.38
2006 147.51 6.25 341.74 243.79
2007 162.82 6.51 354.39 240.09
2008 182.91 7.88 315.71 236.51
2009 166.66 11.84 273.59 220.48

Table 1 Crime in the Italian provinces. Values of the four (i= 1,2,3,4) component mean matrices.

A GMMN model with k components ranging from 2 to 5, has been fitted to
this data by running 20,000 iterations of the Gibbs sampler algorithm (with a burn
in of 10,000 iterations). For space reasons, we describe here the k = 4 solution.
The estimated value of ζ is 0.12, thus denoting that a certain proportion of spatial
dependence has affected the probabilities of group membership.
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In order to interpret the estimated four groups of provinces, we can consider the
component mean matrices of the GMMN classification, reported in Table 1, for the
four groups (i = 1,2,3,4).

As shown from the table, the first cluster is characterized by high values for home
robberies and teenage crime and relatively low values for the other two measure-
ments. This group consists of n1 = 31 provinces. The estimated temporal correlation
is β1 = 0.71. On the contrary, the second cluster consists of n2 = 61 relatively safe
cities (all the crime measurements are lower than those of the other groups), with
higher correlations between the years (β2 = 0.83). In line with the economic and
territorial differences mentioned above, the first cluster of provinces corresponds to
some of the most industrialized and rich provinces of the North and Center of Italy,
while provinces of the second cluster are mainly located in the Center and South of
Italy. The third cluster includes the n3 = 9 biggest and most touristic provinces, like
Rome, Turin, Florence and Milan. These are the provinces with the highest values
of home robberies, teenage crimes and reported muggings, and therefore the most
dangerous ones in terms of the crime indicators considered in this analysis. The
temporal correlation is β3 = 0.66. Cluster 4 consists of only two provinces (Naples
and Caserta) of the South of Italy, which are notoriously and particularly unsafe in
terms of robberies and muggings. The estimated temporal correlation for this last
cluster is β4 = 0.55.
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