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Abstract In the framework of missing data imputation, Rubin [7] formalized three
types of missing data mechanisms upon definition of a missingdata indicator matrix
pointing out the missing-ness in the data matrix, assigningit a random variable with
a conditional probability distribution given the data matrix depending on unknown
parameters. Within Rubin’s paradigm, missing data imputation can be understood as
a model selection problem, such as to estimate the performance of different models
in order to choose the best one which generate sample data. This paper formalizes
a new missing data imputation paradigm [3]. Withinstatistical learning paradigm
[8], missing data imputation can be understood as a model assessment problem,
whatever is the probability model underlying sample data the goal is to minimize its
prediction error (generalization error) on new data.
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1 Missing at random mechanism, Classical paradigm and
Statistical learning paradigm

The proposed methodology for missing data imputation assumesmissing at random
mechanism [7, 5, 4]. LetZ = [X|Y] be a multivariate random variable, in whichX
represents the complete submatrix a ndY contains missing values. LetR be the
missing data indicator matrix. Specifically, the elementsR are considered as re-
alizations of random variables characterized by a probability distribution function
f (R|Z,ψ) depending on the parameter vectorψ. Let f (Z|θ) be the probability dis-
tribution function of the random variablesZ = [X|Y] associated to the complete and
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un-complete part of the data matrix (respectively,X andY), depending on the pa-
rameter vectorθ , such thatf (X|θ) =

∫

f (Z|θ)dY. The joint distribution ofRandZ
can be expressed as follows:

f (R,Z|θ ,ψ) = f (Z|θ) f (R|Z,ψ) (1)

According to Rubin’s definition, missing at random mechanism assumes that the
distribution ofR depends on the dataZ only through the complete partX, thus it
holds

f (R,Z|ψ) = f (R|X,ψ) (2)

Thus, inference on parameters should be based on

f (R,X|θ ,ψ) ∝
∫

f (X,Y|θ) f (R|X,Y,ψ)dY (3)

If the (1) holds then from (2) and (3) it results

f (X|θ ,ψ) ∝ f (R|X,ψ) f (X|θ) ∝ f (X|θ) (4)

As a result, under missing at random mechanism maximizing eq. (2) is equivalent
to maximizing eq. (4), thus the inference onθ can be funded on the observed data
ignoring the missing mechanism. Rubin’s paradigm aims to provide an unbiased es-
timate ofθ such to identify the probability distribution function which generates the
sample data.
In the following, statistical learning theory [8, 9] is considered to provide an alterna-
tive and distinctive paradigm for missing data imputation.If the missing at random
condition is satisfied then for any recordi of the sample data it holds

f ([Xi ,Yi ]|θ ,ψ) ∝ f (R|[Xi ,Yi ],ψ) f ([Xi ,Yi ]|θ) ∝ f ([Xi ,Yi ] θ) (5)

Within statistical learning theory, the interest relies onthe imputation of each miss-
ing data such that the imputed value is the nearest to the realone. Discrepancy
measures and validation in terms of minimization of the generalization (prediction)
error will be considered.
Two separate goals can be satisfied. Within Rubin’s paradigm, missing data impu-
tation can be understood as a model selection problem, such as to estimate the per-
formance of different models in order to choose the best one which generate sample
data. Within statistical learning paradigm, missing data imputation can be under-
stood as a model assessment problem, whatever is the probability model underlying
sample data the goal is to minimize its prediction error (generalization error) on new
data.
Statistical Learning Theory describes a general model of supervised learning which
is suitable in presence of large data dimensionality and unknown probability distri-
bution which generate sample data. Three are the main components: first, a gener-
ator G of random vectorsx ∈ Rk drawn independently from a fixed but unknown
probability distribution functionF(x); second, a supervisorSwhich returns an out-
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put valuey to every input vectorx, according to a conditional distribution function
F(y|x), also fixed but unknown; third, a learning machineLM capable of imple-
menting a set of functionsf (x,θ) whereθ ∈Θ is a set of parameters. The problem
of learning is that of choosing from the given set of functions f (x,θ), θ ∈Θ which
is the best to approximate the supervisor’s response. This can be theoretically satis-
fied upon definition of a loss functionL(y, f (x,θ)), to measure the discrepancy be-
tween the output valuey returned bySand the output ˜y = f (x,θ) provided byLM,
and its expected value, known as the functional riskR(θ) =

∫

L(y, f (x,θ))dF(x,y),
to be minimized over the set of parameters. Aim is to provide ageneralization of
the results derived from its experience using a training sample of n independent
and identically distributed observations drawn accordingto F(x,y) = F(x)F(y|x):
(x1,y1), . . . ,(xn,yn) and considering the Empirical Risk Minimization (ERM) of
Remp(θ) = n−1 ∑n

i=1L(yi , f (xi ,θ)) over the set of parameters. This provides a con-
sistent estimate ofθ , given the loss function and the unknown probability distribu-
tion, if it holds both

plimRn(θ) = in f R(θ), plimRemp,n(θ) = in f R(θ) (6)

whereRn(θ) andRemp,n(θ) are the functional risk and empirical risk functions given
the data of the training sample. This allows to define thekey theorem of Statistical
Learning Theory[10]: let L(y, f (x,θ)), θ ∈ Θ be a set of functions that satisfy the
conditionA≤ R(θ)≤ B with A andB finite constant values, then for the ERM prin-
ciple to be consistent, it is necessary and sufficient that the empirical riskRemp(θ)
converges uniformly, in probability, to the actual riskR(θ).
Vapnik and Chervonenkis have defined a measure of the learnerability defined as
the cardinality of the largest set of points the algorithm can shatter. For each set of
functions characterized by a given complexity it is possible to define the VC dimen-
sionalityd to be the largest value such that it exists a correspondence between the
input and the output. It can be shown that the ERM method yields to a consistent
estimate if the dimensionalityd is finite and if, for a probability equal to(1−η)
with η > 0, it holds

Rn(θ) ≤ Remp,n(θ)+
Bε
2

(

1+

√

1+
4Remp,n(θ)

Bε

)

(7)

whereB is the upper limit ofR(θ) and ε = 4
d(ln 2n

d +1)−ln( η
4 )

n , with d the VC di-
mensionality of the class of functions to be used in the learning process. There is a
trade-off between the training error and the complexity of the class of functions. If
the ration/d is high then theε is small, thus the empirical risk functionRemp,n(θ)
tends to the functional risk functionRn(θ) for the training sample data. According
to Vapnik’s structural risk minimization (SRM) approach both the empirical risk
and the second term of equation (7) need to be minimized. Thus, given the fit of a
nested sequence of models of increasing VC dimensionsd1 < d2 < .. ., the model
with the smallest value of the upper bound is finally chosen. Under this perspective,
the imputation process consists in minimizing the structural risk such that for any
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missing data the imputed value is the nearest to the real one.In other words, given
L1 = L(y, f (x,θ1)) andL2 = L(y, f (x,θ2)), the imputation due tof (x,θ1) is better
than the one provided byf (x,θ2) if L1 < L2.
Missing at random condition reflects indeed apatternof missing data related to the
observed data in the dataset. For that reason missing data imputation can be seen as
a supervised learning process. If we agree that missing dataimputation is a super-
vised learning process, then wemustagree that the lower is the generalization error
provided by the learning machine in imputing missing data, the better is the method
used to solve the problem and the better is the solution achieved. If this is true, then
for data mining purposes missing data imputation methods should be determinis-
tic and no stochastic. It is worthwhile that the same paradigm is extended to data
editing [6], and data fusion [1, 2].
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