Missing Data I mputation within the Statistical
learning Paradigm
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Abstract In the framework of missing data imputation, Rubin [7] fotinad three
types of missing data mechanisms upon definition of a misiatg indicator matrix
pointing out the missing-ness in the data matrix, assigiiagandom variable with
a conditional probability distribution given the data npattepending on unknown
parameters. Within Rubin’s paradigm, missing data impanatan be understood as
a model selection problem, such as to estimate the perfaenaidifferent models
in order to choose the best one which generate sample datapdper formalizes
a new missing data imputation paradigm [3]. Witlsiatistical learning paradigm
[8], missing data imputation can be understood as a modeksssgnt problem,
whatever is the probability model underlying sample dagegtbal is to minimize its
prediction error (generalization error) on new data.
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1 Missing at random mechanism, Classical paradigm and
Statistical learning paradigm

The proposed methodology for missing data imputation assamssing at random
mechanism [7, 5, 4]. LeZ = [X|Y] be a multivariate random variable, in whigh
represents the complete submatrix aYh@ontains missing values. L& be the
missing data indicator matrix. Specifically, the elemeRtare considered as re-
alizations of random variables characterized by a protaldistribution function
f(R|Z, ) depending on the parameter vectiorLet f(Z|6) be the probability dis-
tribution function of the random variabl@s= [X|Y] associated to the complete and
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un-complete part of the data matrix (respectivédyandY), depending on the pa-
rameter vectoB, such thatf (X|0) = [ f(Z|6)dY. The joint distribution oR andZ
can be expressed as follows:

f(RZ[6,y) = f(2]|6)F(RZ, ) 1)

According to Rubin’s definition, missing at random mechan@ssumes that the
distribution of R depends on the dafa only through the complete paX, thus it
holds

f(RZ|y) = F(RIX, ) )
Thus, inference on parameters should be based on

fRXI0.9) 0 [ £(X.Y|8)(RX.Y,$)dY 3)
If the (1) holds then from (2) and (3) it results

f(X[6, ) O F(RX, ) f(X[|6) O £(X]6) (4)

As a result, under missing at random mechanism maximizing2ds equivalent
to maximizing eq. (4), thus the inference 6rcan be funded on the observed data
ignoring the missing mechanism. Rubin’s paradigm aims ¢wigde an unbiased es-
timate of@ such to identify the probability distribution function vdhi generates the
sample data.

In the following, statistical learning theory [8, 9] is catered to provide an alterna-
tive and distinctive paradigm for missing data imputatidthe missing at random
condition is satisfied then for any recardf the sample data it holds

F(X,¥i]16, @) O F(RIX Y], g) £([6, Yi110) O £, Y] 8) (%)

Within statistical learning theory, the interest reliestba imputation of each miss-
ing data such that the imputed value is the nearest to theoreal Discrepancy
measures and validation in terms of minimization of the galimation (prediction)
error will be considered.

Two separate goals can be satisfied. Within Rubin’s paradigissing data impu-
tation can be understood as a model selection problem, sutthestimate the per-
formance of different models in order to choose the best drielmgenerate sample
data. Within statistical learning paradigm, missing dat@utation can be under-
stood as a model assessment problem, whatever is the pitybaloidel underlying
sample data the goal is to minimize its prediction error &galization error) on new
data.

Statistical Learning Theory describes a general modelpéisised learning which
is suitable in presence of large data dimensionality andhowk probability distri-
bution which generate sample data. Three are the main canprfirst, a gener-
ator G of random vectorsc € R¢ drawn independently from a fixed but unknown
probability distribution functiorf- (x); second, a supervis&which returns an out-
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put valuey to every input vectok, according to a conditional distribution function
F(y|x), also fixed but unknown; third, a learning machine capable of imple-
menting a set of function§(x, 8) wheref € © is a set of parameters. The problem
of learning is that of choosing from the given set of functidiix, 8), 8 € © which

is the best to approximate the supervisor’s response. ahide theoretically satis-
fied upon definition of a loss functidn(y, f(x, 8)), to measure the discrepancy be-
tween the output valugreturned bySand the outpuy = f(x, 8) provided byLM,
and its expected value, known as the functional RER) = [ L (y, f(x,0)) dF(x,y),

to be minimized over the set of parameters. Aim is to providgreralization of
the results derived from its experience using a trainingmarof n independent
and identically distributed observations drawn accordm§ (x,y) = F(X)F (y|x):
(X1,¥1),---,(%n,Yn) @nd considering the Empirical Risk Minimization (ERM) of
Remp(0) =n~137 , L(yi, f(x,0)) over the set of parameters. This provides a con-
sistent estimate of, given the loss function and the unknown probability disifi
tion, if it holds both

plimR,(6) =infR(0), plimRempn(6) =infR(O) (6)

whereR,(8) andRempn(0) are the functional risk and empirical risk functions given
the data of the training sample. This allows to definekiaetheorem of Statistical
Learning Theonf10]: let L(y, f(x,0)), 6 € O be a set of functions that satisfy the
conditionA < R(0) < B with A andB finite constant values, then for the ERM prin-
ciple to be consistent, it is necessary and sufficient treethpirical riskRemp(6)
converges uniformly, in probability, to the actual riRk9).

Vapnik and Chervonenkis have defined a measure of the leabiléy defined as
the cardinality of the largest set of points the algorithm shatter. For each set of
functions characterized by a given complexity it is posstbldefine the VC dimen-
sionality d to be the largest value such that it exists a correspondesteesbn the
input and the output. It can be shown that the ERM method yitdda consistent
estimate if the dimensionalitgl is finite and if, for a probability equal to1 — )
with n > 0, it holds

Rn(0) < Rempn(e)Jr% <1+ 1+‘®g;gw(®> -

whereB is the upper limit ofR(8) and e = 4%, with d the VC di-
mensionality of the class of functions to be used in the iegrprocess. There is a
trade-off between the training error and the complexityhef tlass of functions. If
the ration/d is high then thee is small, thus the empirical risk functidRempn(6)
tends to the functional risk functioR,(0) for the training sample data. According
to Vapnik’s structural risk minimization (SRM) approachtibahe empirical risk
and the second term of equation (7) need to be minimized., diesn the fit of a
nested sequence of models of increasing VC dimengiprsd; < ..., the model
with the smallest value of the upper bound is finally choserdéy this perspective,
the imputation process consists in minimizing the strwadtrisk such that for any
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missing data the imputed value is the nearest to the reallor¢her words, given
Ly = L(y, f(x,61)) andL, = L(y, f(x,6,)), the imputation due td (x,6;) is better
than the one provided bf/(x, 6,) if L1 < La.

Missing at random condition reflects indeegatternof missing data related to the
observed data in the dataset. For that reason missing dptadtion can be seen as
a supervised learning process. If we agree that missingiigtatation is a super-
vised learning process, then waistagree that the lower is the generalization error
provided by the learning machine in imputing missing ddte letter is the method
used to solve the problem and the better is the solutionaethidf this is true, then
for data mining purposes missing data imputation methodsildhbe determinis-
tic and no stochastic. It is worthwhile that the same paradig extended to data
editing [6], and data fusion [1, 2].
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