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Abstract Propensity score method is a classic tool for obtaining causal estimates from non-randomized data.
In the applied literature this tool is increasingly applied in contexts where causal inference is complicated by
data having a hierarchical structure, a typical case being that of patients clustered within different practition-
ers and hospitals. This is questionable since several studies suggest that these cluster-level variables can have
a considerable effect both on the treatment intake and the outcome, i.e., they are potential confounders which
can bias causal estimates in absence of adequate control. Via Monte-Carlo simulations, we assess the perfor-
mance of several strategies for the estimation of the propensity score with clustered data. We compare classic
fixed and random-effects models with machine learning algorithms, which outperformed standard strategies
with unclustered data when the link between the treatment and the covariates is not linear and additive. We
found that a novel algorithm, Generalized Mixed Effect Regression Trees, gives benefits analogous to those
found in the non-hierarchical setting by other authors.

1 Background

In observational studies the absence of randomization is the fundamental difficulty in estimating treatment
effects. The idea of propensity score methodology is to summarize a large number of confounding variables
in a single variable, i.e., the propensity score, and then to use this summary for balancing covariates across
treated and control units.

Until recently, most theoretical works on this topic dealt with unstructured data. However, clustered data
are the norm in many fields [4]. Multilevel structures pose challenges for propensity score methodology.
First, the treatment assignment may be multilevel in nature, that is, it may not depend not only on individual
characteristics but also on characteristics of the cluster the individual belongs. Second, the individual out-
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comes may be affected by cluster level characteristics. Moreover there can be complex interactions between
individual and cluster level covariates affecting both treatment assignment and the outcome.

Propensity score methods need to be somehow adapted for applications in a multilevel context. In multi-
site studies of educational programs or interventions, the use of single- level models for estimating propensity
scores followed by the use of the resulting propensity scores as a basis for matching students within each
school has been considered an effective strategy [4, 3]. Following Arpino and Mealli, we present a simula-
tion study which investigates the possibility of using alternative methods for estimating the propensity score
with clustered data.

2 Methods

Machine learning methods considered here are based on a predictive algorithm known as tree. In contrast
with traditional models, trees and their derivations are flexible enough to handle automatically non-linearity
and non-additivity. Machine learning methods have already been proposed for the estimation of the propen-
sity score but only in the single-level case. Simulation experiments implemented by Setoguchi et al. [8] and
Lee et al.[9] showed that machine learning algorithms outperform standard logit models when the relation
between treatment and outcome is not linear and additive.

An extension of machine learning algorithms to a multi-level setting can be carried out with the General-
ized Mixed-Effect Regression Trees (GMERT), developed by Hajjem et al. [6]. To fix the idea, consider the
classic mixed-effect logistic model:

logit[
pi j

1− pi j
] = xi jβ + zi jbi

bi ∼ N(0,D)

i = 1, · · · ,n ; j = 1, · · · ,ni

where the xi j are the fixed-effect covariates and the zi j are the random-effect covariates. This model is
usually estimated using maximum likelihood methods in the framework of the expectation-maximization
(EM) algorithm. In the corresponding GMERT model the term xi j is replaced by a more general function
f (xi j) that can be estimated using a standard regression tree.

The simulation experiment extends the set-up created by Setoguchi et al. [8] to a multilevel context where
the treatment is administered at the individual level but cluster-level variables can enter both the assignment
mechanism and the outcome variable. For each data set we generated ten basic covariates (four confounders
associated with both the treatment and the outcome, three treatment predictors and three outcome predictors)
and a cluster-level covariate acting as a confounder. The treatment assignment is generated according to
various simulation scenarios obtained by varying the degree of linearity and additivity between the treatment
and the individual-level covariates.In each scenario we estimate the propensity score using the following
methods:

- Logistic regression with main effects only (LR)
- Logistic regression with dummies for cluster effects (LRD)
- Mixed-effect logistic regression (MELR)
- Mixed-effect regression tree (MERT)
- Boosted Regression Tree (BTREE)
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The propensity score we used to produce a balanced data set via nearest neighbor matching. The R
package MatchIt was used to perform all calculations [11].

3 Results

In Table 1 we show the results for a set of 1000 simulations, obtained from n=1000 observations clustered
in nc=50 groups of equal size (W and C indicate an individual and cluster-level covariate, respectively).

Table 1 Simulation results (N=500) based on data sets of 1000 observations clustered in 50 groups of equal size.

No cluster effect Random Intercept

Metric† Method‡ S1� S2 S3 S4 S5 S1 S2 S3 S4 S5

ASAM W LR 6.3 10.2 10.4 10.3 10.5 6.1 9.7 9.9 10.2 10.2
LRD 6.1 8.9 10.0 10.2 10.4 7.2 8.8 11.3 11.2 11.2

MELR 6.2 8.8 9.9 10.2 10.4 6.8 9.1 10.9 10.9 11.0
MERT 8.4 8.1 8.2 8.4 8.6 8.5 8.7 8.9 8.8 8.8

BTREES 7.2 11.0 12.1 12.1 12.3 9.2 11.4 12.9 12.7 12.8

ASAM C LR 7.8 7.0 6.2 5.3 5.4 47.9 48.1 47.2 48.9 40.3
LRD 5.9 5.4 5.4 4.0 4.4 6.0 5.0 4.1 4.2 4.3

MELR 8.1 6.0 6.7 5.3 5.4 9.6 9.7 9.7 9.7 10.0
MERT 7.9 6.7 6.9 6.7 6.8 8.3 8.4 8.5 8.7 8.5

BTREES 7.8 6.4 6.3 7.5 7.7 9.8 11.4 12.3 12.3 12.5

RBIAS LR 1.2 13.8 15.9 17.9 29.4 70.1 34.9 39.1 34.8 35.9
LRD 1.2 18.7 19.6 28.6 32.4 2.2 18.9 14.3 27.2 25.0

MELR 2.4 18.9 16.9 16.4 26.3 5.6 19.5 8.6 15.4 18.6
MERT 3.2 11.4 10.8 6.2 12.3 5.4 11.5 6.5 6.8 17.6

BTREES 10.6 14.8 17.3 16.5 15.5 16.6 23.0 25.8 25.5 57.8

SE LR 0.019 0.014 0.014 0.021 0.023 0.101 0.030 0.037 0.024 0.013
LRD 0.019 0.016 0.015 0.018 0.023 0.021 0.023 0.019 0.018 0.018

MELR 0.015 0.014 0.015 0.016 0.019 0.017 0.019 0.010 0.015 0.013
MERT 0.013 0.015 0.014 0.015 0.013 0.015 0.016 0.015 0.020 0.014

BTREES 0.035 0.034 0.034 0.032 0.035 0.04 0.045 0.040 0.039 0.076

†ASAM: 100*average standardized absolute mean difference across treated and controls, RBIAS: mean absolute (per cent),
SE: mean standard error.
‡LR: single level logistic regression, LRD: logistic regression with dummies for clusters, MELR: random-intercept logistic
regression, MERT: random-intercept regression tree, BTREE: boosted tree with dummies for clusters.
�S1: additive and linear, S2: moderately non-linear (+10 two-ways interactions), S3: mild non-additivity and non linearity (+3
two-ways interactions and 1 quadratic term), S4: moderate non-additivity (+3 quadratic terms), S5: moderate non-additivity
and non-linearity (+10 two-ways interactions and 3 quadratic terms).

Usually it is customary to consider a good result an ASAM lower than 20 [9]. From Table 1 we can see that,
in mean, no methods yields an higher ASAM, with the obvious exception of the logistic regression ignoring
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clustering. Also it must be noted that LRD is the most effective in reducing the imbalance in the cluster
variable, even when the random intercept is added. The performance of MERT in reducing imbalance is
slightly better than that of MELR in the main effect scenario S1 but the gap clearly becomes more important
as we move toward scenarios deviating from the standard model.

4 Concluding remarks

We analyzed the performance of various propensity score estimation methods in a simulation context which
extends that of Lee et al. [9] to clustered data. We assume that a cluster-level covariate impacts the treatment
assignment and looked at the performance of propensity score estimation methods as the link between the
treatment and the covariates departures from standard modeling assumpitions. The simulations show that the
performance of all methods degrades when non linearity and non additivity increase, both in terms of higher
imbalance and bias of the causal estimates. However, Mixed Effect Regression Trees [6] and classic Mixed
Effect Logistic Regression performed better than other methods, with MERT also showing a more stable
performance. The study extends to a multilevel setting previous findings of Setoguchi et al.[8] and Stuart et
al.[9], which advocated the use of machine learning methods in propensity score estimation with univariate
data.
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