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Abstract The paper is concerned with maximum likelihood - ML - parameter esti-
mation for Gauss-Markov Random Fields - GMRFs. The ML estimator is straight-
forward under the unrealistic toroidal boundary conditions but difficult for Dirichlet
and other boundary conditions for which, in general, the likelihood is evaluated at
the cost of O(n3) steps for a lattice of n sites. In this paper, by exploiting the recur-
sive structure of the GMRF, we show that using the Kalman filter recursions the ML
estimator can be obtained at the cost of O(n2) steps.
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1 Gauss-Markov random fields

Large amounts of essentially-continuous spatial data are associated with the nodes
or interiors of a regular rectangular lattice. Examples include pixellated images
which occur in many different applications, regularly-sampled spatial data, and
many agricultural field trials. Different types of models have been proposed for ana-
lyzing such data. Here, we consider those that specify the conditional distribution at
each site given the values at all other sites - conditional autoregressive CAR models,
also known as Gauss-Markov random fields - GMRFS. For convenience, we mainly
refer here to Dryden et al. (2002) and Moura and Balram (1992) for known results.

We only consider univariate stationary Gaussian models here - i.e. they have fi-
nite variance, and the correlation between the observations at two sites only depends
on the relative positions of the two sites. The assumption of normality for analysing
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a data set is convenient and often reasonable (perhaps after transformation). We as-
sume models are defined on an infinite regular rectangular lattice, and applied to
data on a complete finite lattice. Then a GMRF is defined by its conditional means.

Suppose that t, u and z are d−dimensional vectors, and assume that {x(t), t ∈ Zd}
is a second-order stationary random field on the regular rectangular lattice, with
mean zero, autocovariance function Rx(u) = Cov{x(t),x(t +u)}, and autocorrela-
tion function rx(u) = Rx(u)/σ2

x , where σ2
x = Rx(0). Provided the sum is finite, the

autocovariance generating function - acgf - of x is Γx(z) = ∑u∈Zd Rx(u)zu, z ∈Cd ,
with ∑ |Rx(u)| < ∞ and zu = ∏d

i=1 zui . The stationarity conditions ensure that the
acgf always exists for |z| = 1, where |z| =

√
(z′z). Let A(z) = 1−∑ j∈Sp α jz j be a

finite symmetric Laurent series satisfying A(z) = A(z−1), i.e. α j = α− j for all j,
where Sp is a finite subset of Zd containing neighbours of the origin. Thus t +Sp is
the set of neighbours of site t. The order of the neighbourhood set is denoted by p,
and is defined sequentially by the maximum distance between the origin and a point
in Sp. Thus, for d = 2, the first-order (p = 1) neighbours of a site are those 4 sites
which are adjacent to it; and the second-order neighbours (p = 2) are these plus the
4 diagonally adjacent sites.

Let [x(t)|·] =
[
x(t)|x(t− j) : j ∈ Zd\{0}] denote x(t) conditional on the values

at all other sites. Then, under normality, the conditional autoregression of order p -
CAR(p) - is defined by the conditional mean,

E [x(t)|·] = ∑
j∈Sp

α jx(t− j),

where α j = α− j for all j, and the constant conditional variance Var [x(t)|·] =
Var[η(t)] = σ2

η , where η(t) = x(t)− E [x(t)|·] is the interpolation error process.
Then

A(L)x(t) = η(t), t ∈ Zd , (1)

where L is a shift operator on an index, such that L jx(t) = x(t− j), and Γηx(z) = σ2
η ,

i.e. the interpolation error η(t) is uncorrelated with all x’s except x(t). Provided
the stationarity condition A(z) 6= 0 for |z| = 1 is satisfied, the acgf of the CAR is
Γx(z) = σ2

η/A(z), and the acgf of η(t) is Γη(z) = σ2
η A(z). Thus the interpolation

process is correlated, with rη(u) given by the inverse correlations of the original
process x(t) (Ippoliti et al., 2012).

2 The ML estimator and the Recursive structure of a finite
GMRF

Suppose d = 2 and consider an (N×M) lattice Ω with n = N×M sites. Then, let
x(t), t ∈ Ω , be the process at sites (ti, t j), i = 1, . . . ,N; j = 1, . . . ,M. We write the
vector, X =

[
xT

1 ,xT
2 , . . . ,xT

N
]T , where xi =

[
x(ti, t1),x(ti, t2), . . . ,x(ti, tM)

]T is the i-th
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row of Ω . The (n× 1) vector X contains the sites in raster scan order - stacking
the top row, then the second row, etc. Then, using matrix notation and following
equation (1), a non-causal representation of the GMRF is

A(α)X = η , (2)

where A(α) is the n× n potential matrix, with entries equal to 1 along the princi-
pal diagonal, −α j if the sites t and t− j are neighbors, and zero otherwise. From
equation (2) it readily follows that X ∼ N

(
0,σ2

η A−1(α)
)
, η ∼ N

(
0,σ2

η A(α)
)

and
the negative log-likelihood of X is

L(α|X) =
n
2

log(2πσ2
η)+

1
2
|A(α)|+ 1

2σ2
η

XT A(α)X.

The ML fit of the model can be found by minimizing the likelihood over the
valid parameter space. In practice, optimization can be over the covariance ma-
trix, Rx = σ2

η A−1(α), positive definite. There are however several problems associ-
ated with this. An important part of the GMRF model specification is the choice of
boundary conditions (b.c.) for a stationary process, since elements of Rx for bound-
ary sites on a finite lattice can be very complicated (Besag and Moran, 1975). When
toroidal boundary conditions are assumed, the minimization of the likelihood for
parameter estimation can be carried out with only O(n log n) steps (see for exam-
ple, Dryden et al., 2002). However, except for the torus assumption, the result for
different boundary conditions is non-stationary - variances are no longer constant,
and correlations at a given lag depend on the sites involved. One option is to set val-
ues of x(t) outside the lattice L to 0 (or the mean in general) - sometimes called the
Dirichlet conditions. However, in general, apart from specific cases, these methods
do not have R−1

x in a form which can be rapidly used. In fact, although there are
computationally fast algorithms for first-order and some second-order GMRFs with
the more realistic Dirichlet boundary conditions, computation is expensive and in
general takes O(n3) steps. In this paper we develop a simple method for inference
with Dirichlet or other boundary conditions which, exploiting the recursive structure
of the GMRF, is computationally fast and requires only O(n2) steps. For simplicity,
we discuss the representation of a first-order GMRF with parameters α01 (for hori-
zontal interactions) and α10 (for vertical interactions); however extensions to higher
orders is straightforward.

Let HM be the (M×M) matrix with entries equal to 1 just above and below the
principal diagonal. Also, let B = IM −α01HM and C = −α10IM , where IM is the
(M×M) identity matrix. Then, it follows that A(α) = IN⊗B+HN⊗C. The recur-
sive structure of the GMRF consists of two equivalent one-sided representations of
x(t) that are obtained by the Cholesky decomposition of the potential matrix A(α),
using a Riccati equation. For example, since A(α) is positive definite, we define the
lower/upper Cholesky decomposition as A(α) = UT U, where U is upper triangular.
Then, from equation (2) we write UX = ε, where ε = UT−1η . As a result, we thus
have an equivalent one-sided ”backward” regressor model from which it follows
that ε ∼ N

(
0,σ2

η I
)

and E
[
εXT

]
= σ2

η U−1.
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The importance of this model lies in the fact that the block banded structure of
A(α) is reflected in the structure of U. In fact, since A(α) is block tridiagonal, U has
only one nonzero off-diagonal block per block row with (M×M) block entries, Ui
and Wi, on the diagonal and off-diagonal block, respectively. Hence, the one-sided
”backward” representation can be expanded as an (M×1) vector AR process (see,
Moura and Balram, 1992)

xi = Fixi+1 +Giε i, 1≤ i≤ N−1
xN = GNεN , (3)

where Gi = U−1
i , Fi = −U−1

i Wi and E
[
ε i,x j

]
= 0, for j < i. The blocks Ui and

Wi, which represent the spatially varying regressors of the one-sided AR repre-
sentation, can be obtained as the solution of the following Riccati equations: a)
S1 = UT

1 U1 = B, b) Wi = (UT
i )−1C and c) Si = UT

i Ui = B−CT S−1
i−1C, i = 2, . . . ,N.

Note that equation (3) represents a ”backward” state-space row model for a noise-
free GMRF and, as in time series analysis, the Kalman filter (Hamilton, 1994) can
be used to evaluate recursively the likelihood for parameter estimation. In fact, let
x̂i|i+1 = E

[
xi|Xi+1

]
the least square forecast of the state vector xi conditional on the

information observed up to row i+1 and Pi|i+1 the corresponding mean squared er-
ror matrix. Then, the conditional distribution, xi|Xi+1, is Gaussian with mean x̂i|i+1
and covariance matrix Pi|i+1, that is

f (xi|Xi+1) ∝ |Pi|i+1|−1/2exp
{
(xi− x̂i|i+1)

T P−1
i|i+1(xi− x̂i|i+1)

}
, i = 1, . . . ,N. (4)

From (4) it is then a simple matter to construct the sample log-likelihood,
∑N

i=1 log f (xi|Xi+1), which can be maximized numerically with respect to the un-
known parameters σ2

η and α . Note that equation (4) can be evaluated at the cost of
O(n2) steps and can be easily extended to deal with noisy data. Finally, note that
a one-sided ”forward” representation of the GMRF can also be defined. However,
since the two representations are equivalent, only one of them can be considered.
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