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Abstract Data from the banking balance sheets can be used to analyse the financial
stability of the banking sector. Occasionally, it may occurthat some data values are
either incorrect or missing, which would have an important effect on the results of
the analyses. Thus, incorrect values should be detected andremoved or corrected,
while missing values should be imputed. This contribution addresses the two prob-
lems using a robust data analysis approach, known as ForwardSearch. In particular,
the Forward Search is used to address the presence of high data collinearity, which
may give rise to many irrelevant outliers. In recent years a MATLAB toolbox, the
Forward Search for Data Analysis (FSDA), has been applied tosimilar problems in
official statistics. The contribution extends the application to the banking sector.
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1 Introduction

In many cases missing or incorrect data complicate dramatically the work of the
analysts. These problems may occur in many disciplines, varying from environmen-
tal studies to economic analysis. It is therefore a good practice for researchers to
include, when the study design is planned, techniques able to address these issues.

In our work we deal with banks’ balance sheets. We analyse about 3000 banks
across the European Union in order to asses the probability of a systemic financial
crisis and the consequent impact on public finances. We use Bankscope database, a
commercial source of information about banks’ annual reports developed by Bureu
van Dijk (http://www.bvdinfo.com/). We use the data stored in Bankscope
as input for a model called SYMBOL (SYstemic Model of Banking Originated
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Asset PD computed from balance sheet variables
Total Assets taken from the balance sheet
Capital Requirement taken either from the balance sheet or reconstructed
Customer Deposit elaborated using data from balance sheet
Inter-bank Exposure elaborated using data from balance sheet

Table 1 Input variables used by the SYMBOL model.

Losses) that we develop at the Joint Research Centre of the EuropeanCommission in
view of monitoring the current financial crisis. SYMBOL simulates potential crises
in the banking sector under various assumptions, and it allows assessing the cu-
mulative effects of different regulatory measures (e.g. higher capital requirements,
strengthened deposit insurance and introduction of resolution funds) and their most
effective combinations.

SYMBOL uses items in bank’s balance sheet to estimate the potential losses for
a given banking system via a Monte Carlo analysis. The model is flexible and can be
deployed either on a single country or on a set of financial institutions sharing com-
mon features. The basic idea is to simulate enough random scenarios and compare
the bank assets with the asset probability of defaults (AssetPD). Then the event of
a bank default is estimated by comparing the bank asset probability of default with
the capital (actual or envisaged). The details on SYMBOL model can be found in
De Lisaet al., 2011.

The SYMBOL model uses the variables in Table 1. An important variable, capital
requirement, for many banks is not directly available from Bankscope. This is due
to many reasons, for example the fact that for some countriesthe legislation does
not oblige banks to report this information in their annual report. Moreover, since
different aspects of bank’s activities contribute to the calculation of AssetPD, each
one subject to approximations or recording mistakes, a check on data coherence is
necessary in order to have reliable results.

Therefore, we are facing with two issues: imputation of missing values and detec-
tion of anomalies in the data. In this paper we address both problems with a single
robust regression technique, based on the Forward Search approach of Atkinson and
Riani (2000), which is introduced in Section 4. The dataset used to demonstrate the
approach and the connected imputation issue are described in the next two sections.
Results and some final remarks conclude the paper (Sections 5and 6).

2 Dataset description

We focus our analysis on data from Bankscope relative to year2010, which is the
last complete data set available at the present date. We are interested in data for all
European Union Member States (27 countries).

We start with a data set containing 8893 banks with 28 fields. Bankscope lists
banks with respect to their activities, which are: Bank Holding & Holding Com-
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panies; Central Bank; Clearing Institutions & Custody; Commercial Banks; Co-
operative Bank; Finance Companies (Credit Card, Factoring& Leasing); Group
Finance Companies; Investment & Trust Corporations; Investment Banks; Islamic
Banks; Micro-Financing Institutions; Multi-Lateral Government Banks; Other Non
Banking Credit Institution; Private Banking & Asset Mgt Companies; Real Estate &
Mortgage Bank; Savings Bank; Securities Firm; SpecializedGovernmental Credit
Institution.

Our main interest is to quantify the impact of the financial crisis on the public
finances of the Member States, which may be called to cover losses to protect de-
positors. Therefore, for this purpose we only select banks and institutions listed un-
der the following categories: Commercial Banks, Cooperative Bank, Savings Bank.
This reduces the database extraction to 6500 banks.

After having done some standard data coherence checks on thebasis of the ac-
counting rules, we select only banks for which data for both Total Assets and Equity
are available. These two variables, which can only be found in the banks balance
sheets, are necessary for the statistical analysis and the Montecarlo simulation in
SYMBOL. After this selection, our dataset finally reduces toabout 3580 banks.

3 Imputation approach

One of the key elements in running the SYMBOL model is the capital requirement.
This is needed first for computing the AssetPD, then for estimating potential losses
and evaluating net losses in the case of bank’s default. In our database we have
two different variables related to the capital requirements, which in Bankscope are
either both available or both missing: (a) Total RegulatoryCapital (TRC); (b) Tier1
Capital (Tier1). They refer to slightly different notions of capital requirements and
in SYMBOL we normally use Tier1.

When the information on capital is missing, we can use the fact that bank’s capital
and equity are strongly correlated. In fact, in the majorityof the cases extracted
from Bankscope, we observe that Tier1 and Equity pairs lie very close to a single
line (the case study of Figure 1 exemplifies the situation). Therefore an approach to
impute missing Tier1 values is to fit the subset of banks for which both variables are
available, with Equity as explanatory variable, and estimate the capital requirement
from the fit.

Two aspects must be carefully considered with this approach. One is that the fit
must be robust to the presence of outlying values in the data.The second has to do
with the fact that in presence of high data collinearity evenminor deviations from the
regression line, which from the operational point of view may be totally irrelevant,
become statistically significant and are therefore detected as outliers. These two
aspects are discussed in more details in Section 4.

The approach can be deployed at different levels: on the entire dataset, within
different bank categories, or within each single country. As case study for this paper
we use the country level approach for Austria.
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4 Robust regression through the Forward Search

The goal of robust statistics is to build estimators independent from model assump-
tion deviations and identify outliers, i.e. observations which are distant from the
bulk of the observed data and can hardly comply with model assumptions. The dis-
cipline has grown considerably in the last two decades and many robust methods are
available in the literature (Maronnaet al., 2006, is an excellent introduction to the
field). Among such methods, the Forward Search of Atkinson and Riani (2000) has
shown superior properties in terms of size and power (Tortiet al. 2012).

For a regression problem withp explanatory variables, the Forward Search (FS)
builds subsets of increasing sizem, starting fromm0 = p, until all observations
are included. The subsets are built using simple ordering criteria: at stepm, the
traditional least squares is used for fitting them observations in the current subset
and the next subset is built with them+1 units with smaller residuals of the fitted
model.

During the process, asm goes fromp to n, we can monitor the evolution of model
estimates, the residuals of the fitted model, or other test regression statistics. In ab-
sence of outliers we expect that during the search process all these statistics remain
rather constant or show smooth increases. On the contrary the entry of outliers,
which by construction will happen in the last subsets, will be revealed by appre-
ciable changes of the monitored statistics. For an important statistic, the minimum
deletion residual among observations not in the subset, distributional results and
confidence bands can be used to identify precisely the outliers (see e.g. Atkinson
and Riani, 2006).

As anticipated in Section 3, the majority of the Tier1 and Equity pairs are al-
most perfectly aligned on one single line. In such case, the estimated value of the
variance of the errors of the regression line,σ2, will be very close to zero and a
small difference between the capital and equity Bankscope sources may lead to
very large residuals, being standardized by the estimated values ofσ . Of course, for
the same reason also thep-values will be very small. In robust statistics this prob-
lem is known as “perfect fit” (Maronna et al., 2006). The Forward Search offers a
very natural way to keep into account the potential presenceof perfect fit cases, by
monitoring the value of the coefficient of determination (R2) during the search. A
value ofR2 that during the progression of the search stays constantly close to 1 is an
indication of almost perfect fit. In such case, we disregard outlier signals based on
the standard diagnostic regression statistics, such as theminimum deletion residual,
and we increase the confidence level to declare observationsas anomalous.

In addition, datasets for which the estimatedR2 value was very small for most
of the search were also collected and studied separately, denoting cases where the
supposed correlation between capital and equity does not hold, which for example
may happen in presence of multiple groups in the data. Under this scenario, the data
should be segmented differently or studied using robust clustering approaches (see
for example Garca-Escuderoet al., 2010).

This approach has been implemented using routines contained in the FSDA tool-
box for Matlab, developed jointly by the University of Parmaand the Joint Research
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Fig. 1 Outliers detected by the FS with the default simultaneous 99% confidence level. The right
plot magnifies the area highlighted with an ellipse in the left plot. The strong collinearity and the
consequent “perfect fit” problem are clear.

Centre of the European Commission (Riani, Perrotta and Torti, 2012). FSDA is
freely available for non commercial use fromhttp://www.riani.it/MATLAB
or http://fsda.jrc.ec.europa.eu.

5 Results

We discuss the application of the methods to the case of Austria. For this coun-
try Bankscope stores 423 banks (369 of them being unconsolidated) including all
specializations. Focusing only on Commercial, Cooperative and Savings banks we
reduce the dataset to 322 financial institutions. Among them257 carry information
on capital, i.e. the fields of both Total Assets and Equity arefilled. Within this subset,
banks for which we have data associated to Tier1 capital are 29.

First of all, we note that the correlation coefficient between Equity and Tier1
is very low: 0.3254. Also, if we test the hypothesis of no correlation, we obtain a
p-value of 0.085. These results, which contradict the expectation of strong linear
relation between the two variables, depend on the presence of outliers in the data.

Figure 1 shows with symbol ’+’ the outliers detected by the Forward Search
with the default simultaneous 99% confidence level. This means that in presence of
normally distributed data without contamination, we expect to find outliers in 1% of
the datasets which are analyzed. Figure 2 also plots the trajectory of the minimum
deletion residual and its 1%, 50% and 99% confidence bands (dotted lines). The
search has started in the area where the majority of the points are collinear, i.e. the
area highlighted in the left plot of Figure 1 and zoomed in theright plot of the
same Figure. Then, the inclusion of observations which deviate just slightly from
the alignment produce the early exceedances from the 99% band of Figure 2 (the
upper dotted line) and are therefore detected as outliers.
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Fig. 2 Monitoring of the minimum deletion residual among observations outside the subset and
the theoretical simultaneous 1%, 50% and 99% confidence level bands (dotted lines). The 99%
simultaneous band is compared with the corresponding 99% Bonferroni band (plain thick line).

From these plots it is quite clear that many of the 14 outliersdetected with this
standard approach should not be excluded from the model fitting. We can there-
fore think to relax the algorithm and declare an observationas an outlier only if,
by including it in the subset, theR2 becomes (or stays) smaller than a reasonable
threshold associated to the ‘perfect fit’ problem, say 0.95. The result of this relaxed
algorithm is shown in the left plot of Figure 3, where the outliers identified are now
just two1. To be even more selective and focus only on the very extreme outliers,
one may also relax the confidence level of the outlier tests bylooking at the sig-
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Fig. 3 Left plot: outliers detected by the FS with simultaneous 99%confidence level, but only if by
including them theR2 becomes smaller than 0.95. Right plot: as on the left, but now the confidence
level is not simultaneous; it is relaxed to be 99% corrected with Bonferroni throughout the search.

1 To be strict, one should distinguish between ‘outliers detected’ and ’outliers excluded from the
fit’. To simplify the wording, we just talk about ’outliers detected’.



Imputation and outlier detection in banking datasets 7

99.75 99.8 99.85 99.9 99.95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

 

 

With outlier
Without outlier
1% GDP 

Fig. 4 Losses predicted by SYMBOL with outliers (continuous line)and without (dashed line)
for various percentiles. The horizontal dotted line identifies 1% of Austria GDP.

nals exceeding a Bonferronised 99% confidence level, instead of the standard 99%
simultaneous level. In Figure 2, this more conservative confidence band is the flat
plain thick line. Details on the theoretical and the Bonferroni bands can be found in
Atkinson and Riani (2006).

TheR2 and p-value associated to testing the hypothesis of no correlation for the
29 records in the original dataset are respectively 0.1059 and 0.0850. Once the 14
outliers detected by the standard Forward Search algorithmare excluded from the fit,
theR2 raises to almost 1 and the hypothesis of no correlation is drastically rejected
(p-value is in the order of 1030). Similar, but less extreme results, are obtained with
the two more conservative methods: with theR2-relaxed method we get 2 outliers
and a finalR2

= 0.994; with the method further relaxed with Bonferroni bands,we
get 1 outlier and finalR2

= 0.9935. In both cases, as for the default algorithm, the
hypothesis of no correlation is still drastically rejected.

Since our final goal is to have reliable input datasets for theSYMBOL model,
we report briefly the results obtained on the Austrian dataset with and without the
outliers, which we expect potentially responsible of unreliable results. SYMBOL
was run under the hypotheses that

- all banks have a capitalization satisfying Basel II requirements;
- contagion effect between banks takes place.

With the full contaminated dataset, SYMBOL predicts a much higher level of losses,
which does not match with other analyses we have carried out.Figure 4 compares
this manifestly wrong prediction with that obtained after excluding the most extreme
outlier in the Austrian dataset.

In the absence of an automatic detection method for such anomalies in the SYM-
BOL input datasets, the analyst would be able to identify theproblematic cases at
the cost of thousands of runs. Then, to find the source of the problems, he would be
forced to scrutinize manually the datasets for incoherent values. For large countries
(e.g. Germany has about 1400 banks), this is practically infeasible.
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6 Final remarks

The approach described in the paper, will be included in the creation of a banking
database for the European Commission Member States, on which we are currently
working on. Our final objective is to produce a plausible picture of the banking
systems in the case of financial crises. The problem of missing values and outliers
(or incorrect data, in general) may have a dramatic impact onresults of a simulation
exercise, which in our case is done using our SYMBOL model.

We have found that the Forward Search approach is able to efficiently detect sig-
nificant and operationally relevant data anomalies. Compared to other robust meth-
ods that can be applied similarly, the Forward Search has theadvantage to naturally
deal with the perfect fit problem, hence avoiding to remove false/marginal outliers
in presence of high data collinearity. We have seen that outlier detection has also
an impact on imputation: databases where outliers have beenruled out are used
to reconstruct missing values, giving stronger importanceto the more reliable and
representative dataset values.

It is worth mentioning that, once outliers are detected, it would be important to
go directly to the source (i.e. the annual report of the banksfor which the problem
has occurred) and check the coherence of the cases detected with the values entered
in Bankscope. If the values in the source documents differ from those in Bankscope,
a simple data correction will fix the situation. If this is notthe case (i.e. the data are
identical), then a deeper problem arise: should we keep the values as they are and
let the model use them, or these kind of unexpected/extreme values should be used
to reconsider the way we model the banking system?
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