Identifiability of Discrete Graphical Models with
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Abstract We define a space of identifiability problems in causal Bayesian networks
and concentrate on two of them. The first problem involves the generic identifiability
of all parameters with restrictions on the state space of the variables. We present a
technique that, given an arbitrary directed graphical model with a single hidden
variable, modifies the model in such a way that we can apply Kruskal’s theorem
and solve the first identifiability problem. The second problem involves the global
identifiability of the causal effect of a set T of variables on a set S of variables.
Pearl’s do-calculus solves the second identifiability problem.
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1 Two Settings for Identifiability

Markovian models are popular graphical models for encoding distributional and
causal relationships. A Markovian model consists of an acyclic directed graph
(DAG) G over a set of variables V = {V},...,V,}, called a causal graph, and a prob-
ability distribution over V, which satisfies two constraints: each variable in the graph
is independent of all its non-descendants given its direct parents, and the directed
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edges in G represent direct causal influences. A Markovian model for which only
the first constraint holds is called a Bayesian network. This explains why Markovian
models are also called causal Bayesian networks.

The chain rule for Bayesian networks states that the joint probability function

P(v) = P(vi,...,vy) can be factorized as
P) = [] Pvilpa(vi)) (1)
Viev

The simplest kind of intervention [4] is fixing a subset of V, T', to some constants
t, denoted by do(T =t) or just do(t), and then the post-intervention distribution
Pr(V)(T =t,V =v) = P,(v) is compatible with the excision semantics and given
by:
: P(v;|pa(V;)) v consistent with ¢
Pv) = [Tv,ev\r P(vilpa(Vi)) . : . ?)
0 v inconsistent with ¢

Let N and U stand for the sets of observable (observed) and unobservable (hid-
den) variables in graph G, i.e., N and U partition V. The observed probability distri-

bution is:
P(n) =Y T] Pvilpa(i)) TT P(vjlpa(V))) 3)
U VieN VieU
One can define a space of identifiability problems based on equation (3). We
concentrate on three dimensions of this space: identifiability of all parameters or
only some of them, identifiability of parameters in their whole range (global iden-
tifiability) or with the exception of some subspace of measure zero (generic iden-
tifiability), and identifiability with restrictions on the cardinality of the state space
of variables or without them. We call identifiability_I the generic identifiability of
all the probabilities in (3) with appropriate bounds on the state spaces of variables,
and identifiability 2 the global identifiability with no bounds on the state space of
variables of the causal effect P,(s), given by:

Yvemns\r Lu [lvemr P(vilpa(Vi)) x
Pi(s) = 4 [lv,ev P(vjlpa(V;)) s consistent with ¢ 4)
0 s inconsistent with ¢

2 Kruskal Theorem and Its Use to Solve Identifiability_1

Kruskal’s theorem applies to a simple latent class model, in which three observed
variables are independent when conditioned on a single hidden one. We outline a
technique that, given an arbitrary directed graphical model with a single hidden
variables, modifies the model in such a way that we can apply Kruskal’s theorem.
The technique, which we have been developing and generalizes the one in [1], is
based on the following operations:
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e Clump several variables (all hidden or all observed) into a single one, with larger
state space.

e Condition on the state of an observed variable.

e Marginalize over an observed variable (making it hidden).

Each of these can be done multiple times, and in combination with one another.
The goal in applying these modifications is always to produce a model to which
Kruskal’s theorem applies, so one needs to use them so that:

e At least 3 observed variables remain, which are independent when conditioned
on the hidden variable.

e The resulting hidden state spaces are “not too large” relative to observed ones.
(Letting a, b, c, and g be the sizes of the state spaces of the observed and hidden
variables, in order, then min(a,q) + min(b,q) + min(c,q) > 2g+2.)

e Parameters for the resulting model are easily related to those of the original one.

It is easy to show by a counting argument that all Bayesian networks of four
nodes in which there is at least one edge between children of the hidden variable are
not identifiable. An example of such a network is in Figure 1(a).

The causal Bayesian network of Figure 1(b) is identifiable by conditioning on
variable 2, applying Kruskal’s theorem on the resulting network of three observed
nodes and inverting the resulting conditional probability tables.

3 Using the Do-calculus to Solve Identifiability 2

The do-calculus consists of three rules that allow the replacement of interventions
with observations in modified graphs [4]. Let X, Y, Z be arbitrary disjoint sets of
nodes in a causal graph G. We denote by Gy the graph obtained by deleting from G
all edges pointing to nodes in X and by Gy the graph obtained by deleting from G
all edges emerging from nodes in X. To represent the deletion of both incoming and
outgoing edges, we use the notation Gy.

(a) (b)

Fig. 1 The causal Bayesian network (whose graph is) (a) is not identifiable_1, but the causal effect
P, (s) is identifiable_2. The causal Bayesian network (b) is identifiable_1, but P (s) is not identifi-
able 2.
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(Rules of Do-Calculus) Let G be the DAG of a causal Bayesian network, and
let P(.) stand for its probability distribution. For any disjoint subsets of variables
X.,Y,Z, and W we have the following rules.

Rule 1 (Insertion/deletion of observations)

Pe(ylz,w) = Pelylw) if (Y L Z|IX, W)y (5)
Rule 2 (Action/observation exchange)

Pe(yw) = P(ylz,w) if (Y LZIX,W)6y, (6)
Rule 3 (Insertion/deletion of actions)

Pelylw) = POlw) if (Y LZIX.W)o ™
where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Gy.

It was shown that the do-calculus is sound and complete [2] for the identifia-
bility_2 problem, i.e., a causal effect is identifiable 2 if and only if the quantity
P, (s) can be tranformed into a formula that includes only observable quantities (i.e.,
quantities derivable from P(N)) by using the rules of the do-calculus and standard
probability manipulations. To show that a causal effect is unidentifiable, it is how-
ever more convenient to use the algorithm of Tian [6], which was also shown to be
sound and complete [5, 3]. For example, Pr(S) is identifiable_2 in the graph of Fig-
ure 1(a), because Pr(S) = P(S); in other words, T has no causal effect on S. This can
also be shown by applying rule 3 (equation (7)), with X ={},Y =S,Z=T,W ={},;
consequently, Z(W) =T, and sz is the graph of Figure 1(a) without the edge
(U,T). Pr(S) is not identifiable_2 in the graph of Figure 1(b).
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