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Abstract We provide a method to construct a class of n–copulas C defined as
C(u) = D(u1, . . . ,un−1)un+A(u1, . . . ,un−1) f (un). These copulas are obtained from
a (n−1)–copula D and some suitable auxiliary functions A and f . Members of this
class have been fully characterized in terms of properties of the auxiliary functions.
The proposed copulas may model some weak dependence and a non–exchangeable
behavior among the components of a random vector. Moreover, they can be easily
simulated and fitted to real data.
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1 Introduction

Motivated by the recent interest about dependence and related concepts for the de-
scription of stochastic behavior of correlated random phenomena in economics, fi-
nance and geoscience, a number of papers has been recently devoted to the construc-
tion of higher dimensional copulas. See, for instance, [4, 5, 7, 8]. Moreover, there
are several examples in which it is essential to consider weak dependence struc-
tures instead of simple independence. This is in particular related to some of the
most popular conditions used by econometricians to transcribe the notion of fading
memory.
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Here we are interested on a special construction for copulas, which is based on
the modification of a known copula by adding to its expression a factor term in order
to allow more flexibility in the dependence structure. Constructions of this type are
sometimes called perturbations of a copula [2] and have been implicitly used in
the literature several times; e.g., see the Farlie–Gumbel–Morgenstern distribution
(hereafter, FGM) and its various modifications [1].

Specifically, we extend an (n−1)–copula D to a n–copula C such that D is a mul-
tivariate margin of C in most cases. Methods of this type are particularly useful when
one knows the behavior of a (n−1) random vector, say X′ = (X1,X2, . . . ,Xn−1), but
there is small evidence about the relations between X′ and another random variable
Xn that should be included into the model. This approach has some other features
of interest; i.e., dependent random samples can be easily simulated (via conditional
distribution method) and copula parameters estimated by using maximum pseudo–
likelihood techniques.

The described method has been investigated in detail in [3], where an application
to hydrological data is also given.

2 The model

Let I= [0,1]. Given u = (u1, . . . ,un) ∈ In, we denote u′ = (u1, . . . ,un−1). For n≥ 3
and a given (n−1)–copula D, we aim at considering n–copulas that can be expressed
in the form

C(u) = D(u′)un +A(u′) f (un) (1)

for suitable functions A : In−1→ R and f : I→ R.
Notice that, if f (t) = t(1− t) for every t ∈ I, then copulas of type (1) have been

considered in [9], where it is also shown that they include the FGM family of mul-
tivariate copulas. The following result characterizes the n-copulas of type (1).

Proposition 1. Let D be an (n−1)–copula. If A : In−1→ R and f : I→ R are two
non–zero functions, then C defined by (1) is an n–copula if, and only if, A and f
satisfy the following conditions:

(A1) A(1) = 0 and A(u′) = 0 for all u′ ∈ In−1 having at least one component
equal to 0;

(A2) f (0) = 0 and f (1) = 0 or, otherwise, A(u′) = 0 for all u′ ∈ In−1 having n−2
components equal to 1;

(A3) f is absolutely continuous and αD,A ≤ f ′(t) ≤ βD,A for almost every t ∈ I,
where αD,A and βD,A are provided in [3].

Here we provide some examples that illustrate the usefulness of previous result.

Example 1. Let D=Πn−1 the independence copula and let f : I→R. Let A : In−1→
R be the function defined by A(u′) = ∏

n−1
i=1 ui(1−ui). Thus, C : In→ I given by
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C(u) = Πn(u)+
n−1

∏
i=1

ui (1−ui) f (un), u ∈ In,

is an n–copula if, and only if, f is a 1–Lipschitz function satisfying (A3). This
model can be used when all the variables of interest are pairwise independent, but
the model is not globally independent.

Example 2. Let D be an (n−1)–copula and let f be the absolutely continuous func-
tion defined on I by f (t) = t(1− t)(2+ t). Let A : In−1→R be a function satisfying
conditions (A1) and (A2). It follows that

C(u) = D(u′)un +A(u′)un (1−un)(2+un) (2)

is an n–copula if, and only if,−VD(J′)/2≤VA(J′)≤VD(J′)/3 for every (n−1)–box
J′ in In−1. Copulas of type (2) belong to the family of n–copulas with cubic section
in one variable discussed in [10].

Example 3. Let us consider D=Mn−1 the comonotonicity copula, and let A : In−1→
R be given by

A(u′) =

{
1−Mn−1(u′), u′ ∈ [ 1

2 ,1]
n−1,

Mn−1(u′), otherwise.

Let f : I→ R be a function such that f (0) = f (1) = 0. Then

C(u) =

{
Mn−1(u′)(un− f (un))+ f (un), u′ ∈ [ 1

2 ,1]
n−1,

Mn−1(u′)(un + f (un)), otherwise

is an n–copula if, and only if, f is a 1–Lipschitz function. Notice that such a C is
not absolutely continuous.

3 The model in practice

Here, we present some features of the obtained model that could be useful from a
practical viewpoint.

Probabilistic interpretation. Intuitively, copulas of type (1) have been obtained
from a basis copula, namely D(u′)un, which is modified by means of an additive
term, namely A(u′) f (un), in order to ensure that C describes a wider range of
weak dependence than the basis copula. In fact, if X were a random vector whose
copula is D(u′)un, then Xn would be independent from the other variable. But,
in such a model, the modification A(u′) f (un) includes artificially a link between
Xn and the other components of X.

Richness of the method. The present construction principle allows to obtain fam-
ilies of copulas that are more general than the classes previously considered (see
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for instance [1, 9, 10]). In particular, we may obtain copulas with a singular com-
ponent. This feature is especially used when one wants to model loss random
variables in financial context and would like to allow for joint defaults.

Asymmetry. As a special feature, copulas of type (1) may model a non–exchangeable
behavior among the variables of interest. This flexibility is not possible with some
of the widespread families of copulas, like Archimedean and Gaussian copulas.

Tail behavior. Copulas of type (1) may describe some joint heavy–tail behavior of
the variables under consideration. In particular, contrarily to most of the families
of copulas derived from FGM models, they may add some positive probability
mass to the tail of the distribution.

Sampling procedure. Usually, the derivatives of a copula C of type (1) can be eas-
ily calculated when the derivatives of A and D are computationally manageable.
Thanks to this fact, in order to simulate a random sample from C, the conditional
distribution method [8] can be applied. Some simulations from copulas of this
type appeared in [3].

Fitting procedure. The density of an absolutely continuous copula C of type (1)
can be easily calculated when the density of A and D are computationally man-
ageable. Thanks to this fact, fitting procedures based on maximum pseudo–
likelihood estimation can be adopted for such a model.
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