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Abstract The aim of this work is to highlight some interesting connections between
contingency tables analysis and Design of Experiments. In particular, we consider
two-way tables in correspondence to two-factor designs. A condition that charac-
terizes the estimability of the independence model for all saturated fractions is pro-
vided.

1 Introduction

We consider contingency tables under the classical theory of log-linear models.
Given two categorical random variables X and Y , a sample is summarized in an
I×J contingency table. Under the Poisson sampling scheme, the counts of the cells
are independent Poisson-distributed random variables Ni, j with mean parameters
µi, j > 0. The independence model is therefore defined through the system of equa-
tions:

log(µi, j) = λ +λ
(X)
i +λ

(Y )
j .

Such a model has p = I + J−1 parameters. For a detailed presentation of the inde-
pendence model and its parametrizations, we refer to [1].

An I× J contingency table can be viewed also as a 2-factor experiment where
the variables X and Y are the factors. In analogy with the independence model, we
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consider linear models with the constant and the simple effects estimated through
saturated fractions with p = I + J−1 points.

The connections between tables and designs have been already explored in [3],
where the focus was on the generation of all sudoku games. Here, we explore a
different kind of connection, studying the estimability of saturated models.

2 Results

The design matrix of the independence model for I × J tables, under a suitable
parametrization, is a full-rank matrix with dimensions IJ× (I + J−1):

A = (a0 | r1 | . . . | rI−1 | c1 | . . . | cJ−1) ,

where a0 is a column vector of 1’s, r1, . . . ,rI−1 are the indicator vectors of the first
(I−1) rows, and c1, . . . ,cJ−1 are the indicator vectors of the first (J−1) columns.
For instance, in the case of 3×3 tables, the design matrix is:

A =

(1,1)
(1,2)
(1,3)
(2,1)
(2,2)
(2,3)
(3,1)
(3,2)
(3,3)



1 1 0 1 0
1 1 0 0 1
1 1 0 0 0
1 0 1 1 0
1 0 1 0 1
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 0


.

As the parameter vector is a point of the space Rp, the minimum number of points
needed to estimate the parameters is p. The problem is therefore to determine the
subsets S with exactly p cells that yield a non-singular submatrix. This problem
is not trivial. For instance, let us consider the following 3× 3 configurations with
p = I + J−1 = 5 cells, where ? stands for a chosen cell.

S1 =

? ? −
? ? −
− − ?

 S2 =

? ? −
− ? −
− ? ?

 .

S1 and S2 have a different behavior. In fact, the corresponding submatrices are:

AS1 =

(1,1)
(1,2)
(2,1)
(2,2)
(3,3)


1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 0 0

 AS2 =

(1,1)
(1,2)
(2,2)
(3,2)
(3,3)


1 1 0 1 0
1 1 0 0 1
1 0 1 0 1
1 0 0 0 1
1 0 0 0 0
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with det(AS1) = 0 and det(AS1) = −1. The difference between the two configura-
tions is that the former contains a cycle, while the latter does not.

Definition 1. A k-cycle (k ≥ 2) is a subset of 2k cells in a k× k subtable such that
there are exactly 2 cells in each row and in each column.

The k-cycles have a special meaning in Algebraic Statistics in order to enumerate
all tables with fixed margins (i.e., the tables in the Fréchet class). Recall that a
Markov basis is a set of moves which makes connected each pair of tables with

the same margins. It is well known that the basic moves of the form
+1 −1
−1 +1 for all

2× 2 submatrices of the table form a Markov basis, and their supports are just the
2-cycles. It is easy to see a 2-cycle in the configuration S1 above.

Moreover, filling a k-cycle with appropriate +1’s and −1’s we obtain a move
which preserves the marginal totals. For further details on the relations between the
cycles and the Markov bases for the independence model, see [2] and [5].

The connections between the cycles and the factorial designs are established in
the following results. We recall the definition of Orthogonal Array, see [4], as a
fraction F of the full factorial design D ≡D1× . . .×Dm, where each factor Di has
ni levels, i = 1, . . . ,m.

Definition 2. A fraction F of a design D is a mixed orthogonal array of strength t
if it factorially projects onto any I-factors, I = {i1, . . . , it}, with #I = t. Factorially
projects onto I factors means that the projections of the fraction F over the I factors
contain each t-tuple of Di1 × . . .×Dit the same number αI > 0 of times.

We denote a fraction F that satisfies Definition 2 and such that #F = n by
OA(n,n1× . . .×nm, t). We get the following proposition.

Proposition 1. A k-cycle (k ≥ 2) is:

• an OA(2k,k× k, t) where t = 2 if k = 2 and t = 1 if k ≥ 3;
• the union of two disjoint orthogonal arrays OA(k,k× k,1).

The relation between the k-cycles and the non-estimability of linear models is
established in the following theorem.

Theorem 1. A subset S with p points yields a non-singular design matrix if and
only if it does not contains cycles.

3 Examples and discussion

We illustrate the above theory by a simple example. Let us consider the following
configuration S for a 5× 5 table. It contains a 4-cycle in the first 4 rows and the
first 4 columns, hence it defines a singular design matrix:
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S =


? − ? − −
− ? − ? −
? ? − − −
− − ? ? −
− − − − ?

 .

Filling the 4-cycle with suitable +1’s and −1’s, we obtain a move. Such move can
be decomposed in the sum of its positive and negative part:

+1 0 −1 0
0 −1 0 +1
−1 +1 0 0
0 0 +1 −1

 =


+1 0 0 0
0 0 0 +1
0 +1 0 0
0 0 +1 0

−


0 0 +1 0
0 +1 0 0

+1 0 0 0
0 0 0 +1

 .

The left hand side corresponds to an OA(8,4×4,1), while the right hand side cor-
responds to two OA(4,4×4,1), namely:

{(1,1),(2,4),(3,2),(4,3)}∪{(1,3),(2,2),(3,1),(4,4)} .

Finally, we notice that proportion of singular designs is not negligible. Approx-
imately, for I = J = 3 we obtain a singular design in 36% of cases, for I = J = 4
in 64% of cases and for I = J = 5 in 81% of cases. Hence, the characterization of
non-singular designs, as given in Theorem 1, is useful from an algorithmic point of
view, because the random choice of a subset of I + J−1 points does not appear an
efficient procedure.
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