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Abstract The fiducial argument was introduced by Fisher in order to obtain distribu-
tions for unknown parameters without the need of a bayesian perspective. In recent
years, a certain interest has grown for fiducial inference. In this paper we are using a
result obtained by Petrone and Veronese in order to construct a fiducial distribution
for the parameter of a discrete or continuous real exponential family in a simple and
quite general manner. We identify the families for which a fiducial distribution can
be seen as a posterior with respect to a (improper) prior, thus completing previous
results by Lindley and we demonstrate that such a prior belongs to the conjugate
family. Some further results on the fiducial distribution are discussed.

Key words: asymptotics, Bayesian posterior distribution, conjugate prior, coverage
probability, simple quadratic variance function

1 Introduction and Preliminaries

Fiducial inference, after being introduced by Fisher in the 1930s (see, for example,
[3]), had a significant growth in subsequent years but was substantially abandoned
later due to its difficulties in interpretation and deficiencies when trying to extend
it to less elementary models, see [7]. The main aim of Fisher’s fiducial inference
was to transfer randomness from the observed quantity to the parameter, in order to
build a probability distribution for the parameter capturing all the information given
by the data, without the need of a bayesian prior. This fiducial distribution could
then be used in a straightforward way to derive inferences on the parameter, mainly
to obtain confidence intervals. Originally Fisher considered a one-parameter con-
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tinuous statistical model for which the distribution function (df) Fθ (x) is a strictly
decreasing and differentiable function of the parameter θ ∈Θ . For each observed
x, he defined the fiducial density of θ as the function hx(θ) = −∂Fθ (x)/∂θ , pro-
vided that limθ→supΘ Fθ (x) = 1− limθ→infΘ Fθ (x) = 0. More recently a resurgence
of interest for fiducial inference took place. A very interesting and comprehensive
discussion on generalized fiducial inference is given by Hannig [4].

In this paper we consider a Natural Exponential Family (NEF) with density, with
respect to a non-degenerate σ -finite measure ν , given by pθ (x) = exp{θ x−M(θ)},
θ ∈Θ , where M(θ) = ln

∫
exp{θ x}ν(dx) and Θ is the interior of the natural param-

eter space {θ ∈ IR : M(θ) < ∞}. It is well known that, for an i.i.d. sample (X1, . . . ,Xn)
from a NEF, S = ∑

n
i=1 Xi is a sufficient statistic having df Fn,θ and density, with re-

spect to a suitable measure νn,

pn,θ (s) = exp{θ s−nM(θ)}, θ ∈Θ .

In Section 2 we define a fiducial distribution for the parameter of a continuous
or discrete NEF. Moreover, we establish a relationship between expectations and
maximum likelihood estimates, the asymptotic normality of the fiducial distribu-
tions and we discuss the frequentist coverage of fiducial intervals. In Section 3 we
characterize fiducial distributions that can be seen as posteriors, together with the
corresponding priors, completing a previous result by Lindley [5].

2 Fiducial distributions in continuous and discrete NEF’s

The starting point of our analysis is a result by Petrone and Veronese [6] which
essentially establishes that, if S is distributed according to Fn,θ , then Hn,s(θ)≡ 1−
Fn,θ (s) is a continuous df on Θ . Hence its density

hn,s(θ) =
∂

∂θ
Hn,s(θ) =− ∂

∂θ
Fn,θ (s) =

∫
(s,+∞)

(t−nM′(θ))pn,θ (t)dνn(t) (1)

can be interpreted as the fiducial density of the natural parameter θ . From (1),
the fiducial distribution of a general parameter λ = g(θ) can be trivially obtained
through the standard change-of-variable rule. The function hn,s in (1) is a density
for both continuous and discrete NEF’s. However, while for continuous NEF’s re-
placing Fn,θ with its left-continuous version has no effects, in the discrete case this
is not true. Two different versions of the fiducial distribution of θ are obtained and
we denote by HL

n,s the one generated from the left-continuous version of Fn,θ . This
non-uniqueness in the discrete case typically arises in all approaches to fiducial
inference; see e.g. [4]. Moreover, both Hn,s and HL

n,s can fail to be df’s for some
boundary values of s. For instance, when Fn,θ is the binomial df with success prob-
ability p = exp(θ)/(1+exp(θ)), Fn,θ (n) = 1 and thus Hn,n(θ) = 0 for all θ , so that
Hn,s is not a df for s = n. Similarly HL

n,s is not a df for s = 0. We will comment on
this point in Section 3.
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The following examples provide the fiducial distribution computed making use
of (1) for some common statistical models.

• Normal model with mean µ and known variance σ2. The fiducial distribution of
µ is Normal with mean x̄ = s/n and variance σ2/n.

• Negative Exponential model with mean λ−1. The fiducial distribution of λ is
Gamma with parameters s and n.

• Bernoulli model with success probability p. The fiducial distribution of p is
Beta(s + 1,n− s) for the right-continuous version of Fn,θ and Beta(s,n− s + 1)
for the left-continuous one.

• Poisson model with mean λ . The fiducial distribution of λ is Gamma(n,s + 1)
for the first version and Gamma(n+1,s) for the second one.

• Geometric model with success probability p. The fiducial distribution of p is
Beta(n,s+1) for the first version and Beta(n+1,s) for the second one.

Some interesting results can be achieved using the connection between Hn,s(θ)
and Fn,θ (s),

Proposition 1. Given a continuous NEF with natural parameter θ and quadratic
variance function (i.e., the variance is quadratic in the mean parameter µ =
M′(θ) = Eθ (S/n)), the expected value of θ , with respect to Hn,s, is

EHn,s(θ) = M′−1(s/n) = M′−1(x̄).

Thus M′−1(x̄) can be seen as a fiducial estimate of θ . Since x̄ is the maximum
likelihood estimate (MLE) µ̂ of µ = M′(θ) and, for the MLE invariance property,
θ̂ = M′−1(x̄), then the fiducial estimate of θ coincides with θ̂ . As a consequence,
the fiducial estimate of a general parameter λ = g(θ), with g smooth, is equal to
λ̂ = g(θ̂), because of the definition of the fiducial distribution of λ .

The following useful asymptotic result can be easily proven.

Proposition 2. Under the fiducial distribution, the mean parameter µ of a NEF is
asymptotically normal with mean x̄ = s/n and variance M′′(M′−1(s/n))/n.

When using fiducial distributions for statistical inference one usually has, fol-
lowing Fisher’s spirit, a frequentist perspective. Hence, as observed by Hannig [4],
it is important to ensure that fiducial distributions lead to procedures that are (at
least approximately) exact in the frequentist sense. This should be specifically re-
quired for confidence sets. Then, if qα(s) denotes the (1−α)-quantile of Hn,s, i.e.
Hn,s(qα(s)) = 1−α , one would like to have Pr({s : θ ≤ qα(s)})' 1−α , where the
last probability is computed under Fn,θ . This is of course analogous to the widely
discussed problem of matching priors in a bayesian setting, see [2]. For continuous
NEF’s the previous requirement is satisfied in an ”exact” sense, while for the dis-
crete ones the validity of the result is only approximate, i.e. the frequentist coverage
of the set {s : θ < qα(s)} converges to 1−α for n→ +∞. However, the behaviors
of Hn,s and HL

n,s are quite different for small n. An interesting discussion about the
coverage of intervals for a binomial proportion is given in [1].
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3 Connections between fiducial and posterior distributions

The existence of a prior generating a posterior equal to the fiducial distribution in the
case of a continuous NEF was discussed by Lindley [5]. He showed that such a prior
exists only for Gaussian and Gamma models. The following proposition generalizes
this result and gives a complete answer to the problem.

Proposition 3. The fiducial distribution Hn,s for a real NEF coincides with a pos-
terior only for the following families having quadratic variance function: Normal
(known variance), Binomial, Poisson, Gamma (known shape) and Negative Bino-
mial. The corresponding prior for the natural parameter θ is proportional to M′(θ)
in all cases except for the Normal one, in which the prior is constant.

Moreover, Hn,s belongs to the usual conjugate family whose density is
πθ (θ |s′,n′) ∝ exp{θs′−n′M(θ)}, with s′ = s+ l and n′ = n−q, where q and l are
the coefficients of the quadratic variance function V (µ) = qµ2 + lµ +c of the NEF.

A similar conclusion holds for discrete families if we consider HL
n,s; in this case,

the ”updating rule” is s′ = s + l − 1 and n′ = n− q. Recognizing that a fiducial
distribution belongs to the conjugate family is relevant since it allows directly to use
its well known good mathematical and statistical properties.

Finally we observe that, since there is no argument to favor Hn,s or HL
n,s as fidu-

cial distribution in the discrete case, one could take a sort of ”mean” HM
n,s between

them. If we take HM
n,s as the conjugate with parameter s′ = s+ l−1/2, given by the

average of s + l and s + l− 1, then it is easy to see that it turns out to be the pos-
terior corresponding to the Jeffreys’ prior. This proposal solves the non-uniqueness
problem yielding a fiducial distribution always defined for all observations and with
good coverage properties, as proved in [1] and [4].
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