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Abstract In diffusion magnetic resonance imaging the measured intensity signal
allows to estimate the Apparent Diffusion Coefficient (ADC), which helps detect-
ing the presence of tumors and necrotic areas. This signal is Rician-distributed, so
assuming an approximate Gaussian model can lead to serious bias when the signal-
to-noise ratio is low. In this work we consider a maximum likelihood estimator of
the ADC, also estimating the noise dispersion parameter from the same data, and we
propose different experimental design solutions for increasing the accuracy of esti-
mates with few observations, based on the optimization of a functional of the Fisher
Information Matrix. The proposed methods, implemented in R, are then validated
using real measurements performed on a dummy.
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1 Introduction

Diffusion Magnetic Resonance (MR) is a clinical imaging technique that allows to
detect some important properties of biological tissues. In particular, when the tissue
region of interest can be considered as isotropic, the Apparent Diffusion Coefficient
(ADC) can be used as an index of water diffusivity in the tissues. Its reduced value
in lesions with respect to the surrounding physiological tissues allows to identify
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regional necrosis, making it a useful quantity for the diagnosis of some types of tu-
mors, like breast and prostate cancer (see for example [8] and [6]). This parameter
can be estimated pixel-by-pixel by analyzing the dependence between the MR mag-
nitude signal and a function of the MR acquisition parameters, the so-called b-value.
For an overview on magnetic resonance, see for example [3].

In many practical situations it may not be possible to collect more than few mea-
sures at different b-values, so a reduction in the total number of measurements nec-
essary to achieve a certain accuracy in ADC estimation is convenient in term of costs
and patient involvement time. The purpose of this work is to increase the accuracy
of ADC estimates by using maximum likelihood (ML) methods and by formulating
an efficient design of the experiment.

2 Rician distribution and estimation problem

The considered magnitude data derive from the complex signal w = wr + iwi mea-
sured in diffusion MR. It is usual to assume that both wr and wi are affected by
a Gaussian noise with equal, constant variance, i.e. wr ∼ N (ν cos(ϑ),σ2) and
wi ∼ N (ν sin(ϑ),σ2), with ν ∈ IR+ and ϑ ∈ [0,2π). The measured magnitude

M =
√

w2
r +w2

i then follows a Rician distribution, with probability density given
by

fM(m) =
m
σ2 e−

m2+ν2

2σ2 I0

(mν

σ2

)
1l(0,+∞)(m),

where I0 is the zeroth-order modified Bessel function of the first kind. In the limiting
case σ2 = 0 (no noise), the parameter ν would be the “true” signal of interest.

A widely accepted model for the dependence of the signal ν on the b-value b is
the Stejskal-Tanner equation, here specified in the case of an isotropic tissue,

ν = ν0 exp(−αb), (1)

where α is the ADC, i.e. the parameter of interest.
Least squares fitting is commonly used to estimate the parameters (ν0,α,σ2) of

this model, thus approximating the problem to a non linear regression with gaussian
additive noise. This approximation loses accuracy when the Signal-to-Noise Ratio
(SNR) ν/σ is low (see [7] for a discussion on this topic), while ML estimation for
the Rician model leads to more accurate estimates of the parameters. In this work we
assume the magnitude signal on each pixel of an MR image as Rician-distributed,
with a local ν parameter that depends on the b-value following equation (1).

Let us consider a sample of observations of a magnitude signal m = m1, . . . ,mn
obtained as responses to the b-values b = b1, ...,bn on a single pixel of a MR image.
The likelihood function for the considered model is



Experimental design for the estimation of Rician-distributed intensity fields in MRI 3

L(ν0,α,σ2|m,b) =
n

∏
i=1

mi

σ2 e−
m2

i +ν2
0 e−2αbi

2σ2 I0

(
miν0e−αbi

σ2

)
1l(0,+∞)(mi). (2)

The optimal values of ν0 and α for equation (2) cannot be obtained explicitly, so
a numerical optimization method is required to obtain estimates ν̂0 and α̂ . In this
work we use the L-BFGS method (see [4]) with interval constraints, implemented in
the R function optim [5].

The parameter σ2 is commonly estimated separately before the estimation of
other parameters, considering areas of tissue where the measured signal is believed
to be almost pure noise. Considering a joint likelihood for the whole MR image, σ2

can also be estimated using an alternated maximization approach: fixing the vectors
ν0 and α of parameter values on different pixels, σ2 is estimated by ML, then σ2

is fixed to its updated estimate and ν̂0 and α̂ are obtained separately on each pixel.
This method has good empirical convergence properties.

3 Experimental design

We propose an experimental design performed by choosing a convenient b-value
for a new measurement, basing on estimates obtained in previous measurements.
Since the inverse of the Fisher Information Matrix (briefly FIM) I −1(θ |σ2,b) for
large samples approaches the covariance matrix of a vector of ML estimators θ̂ =
(θ̂1, . . . , θ̂k), we iteratively optimize a convenient functional of the FIM with respect
to b = (b1, . . . ,bn) for a fixed sample size n. The FIM depends on the values of the
unknown parameters ν0 and α in a non trivial way, so we perform the optimization
fixing their values and assuming that they are near to the real ones. We propose an
adaptive greedy optimization, that can alternates the following steps:

1. Compute estimates ν̂
(h)
0 and α̂(h) of ν0 and α using measurements performed on

b∗1, . . . ,b
∗
h.

2. Fixing (b1, . . . ,bh) = (b∗1, . . . ,b
∗
h) and (ν ,α) = (ν̂

(h)
0 , α̂(h)), find

b∗h+1 = argminbF
[
I (ν̂(h), α̂(h)|σ2,b∗1, . . . ,b

∗
h,b)

]
,

being F a suitable functional of the FIM, then perform a new measurement mh+1
at point b∗h+1 and increment h by 1.

In our implementation we consider F
[
I (ν̂0, α̂|σ2,b∗1, . . . ,b

∗
n)
]
=I −1

22 , the asymp-
totic variance of the ML estimator α̂; other solutions are possible, like the determi-
nant or the trace of I −1.

The method described above refers to a single pixel of a MR image, but in ap-
plications it is necessary to improve some index of global precision on the whole
image. This can be achieved, for example, by minimizing the sum of variances of
ADC estimators on all pixels of the image.
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The experimental design can be validated using measures performed on a dummy
with known diffusion properties, collected on a fine grid of b-values. A subset of the
available b-values and related measures can be used as fixed design observations,
while the adaptive design can be approximated choosing adaptively the available b-
value nearest to the computed optimum. Estimates obtained in both cases can then
be compared with the known physical values, at different sample sizes. Preliminary
simulation studies have underlined the potential efficacy of the adaptive approach
based on the sum of asymptotic variances with respect to a fixed design (see [1]).

4 Conclusions

The proposed method is a promising strategy for achieving higher accuracy in the
estimation of an ADC field, when compared to fixed design estimation. The appli-
cation of our approach to the considered statistical model is new and innovative in
the field of diffusion MR, and could lead to an improvement of diagnoses without
having to increase the size of information available. In the future both the estimation
methods, here based on maximum likelihood, and various experimental designs will
be extensively compared to alternative approaches (see [2] for a simulation compar-
ison of frequentist and Bayesian methods for the single-pixel case).
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