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Abstract This paper provides a supervised classification tree-basedmethodology to
deal with Multivalued data, specifically predictors measurements can be provided by
a functional distribution or an interval of values. Main literature refers to symbolic
data analysis, aiming to extend standard methods such as factorial analysis, cluster-
ing, discriminant analysis, etc., to deal with symbolic data tables. One approach is to
define a suitable data pre-processing enabling the application of standard methods.
A more correct approach is to define suitable methods to deal specifically with un-
standard data. In the framework of supervised classification, there are no proposal
in literature for supervised classification methods to dealwith both standard and
multivalued data as well. There are only proposals based on data pre-processing.
This paper provides a methodology to grow the so-called Dynamic CLASSifica-
tion TREE (D-CLASSTREE), upon suitable definition of both a specific splitting
criterion and a tree-growing algorithm. A real world case study will be considered
to show the advantages of the final output and main issues of the interpretation. A
comparative study with older proposals will be also described such to demonstrate
the stability and the better accuracy of the D-CLASSTREE.
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1 The imprecise data

The results of measurements are not precise numbers or vectors but more or less
imprecise numbers or vectors (Viertl, 1999, 2003). Imprecision is different from
measurement errors or stochastic uncertainty. In the last decade, the literature about
the statistic treatment of imprecise measurement counts several contribution (Couso
and Sanchez, 2011; Ferraro, Colubi, Gonzalez-Rodriguez, and Coppi, 2011; Gil et
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al., 2006). Special cases of imprecise data are both interval and histogram data.
They are typical where training data comes with intrinsic uncertainty that might be
the result of imprecise measuring instruments, as in image recognition framework,
human judgments, etc. We intend our approach as a ’subjectivist’ view of impreci-
sion formalizing the uncertainty concerning an underlying’crisp’ phenomenon.

2 Tree-based methods

Data can be hierarchically organized in a connected and oriented graph, the so-called
tree, characterized by a set of linked nodes, in which any twonodes are connected
by exactly one simple path, the starting-node is theroot and the end-nodes are the
leaves. Two properties are satisfied: theshape property, where each node has a fixed
numberr of child nodes (forr = 2 it is assumed a binary tree); theheap property,
where each node is greater than or equal to each of its children according to some
comparison predicate which is fixed for the entire data structure. Trees have been
used in supervised classification and non parametric regression. Each node of the
tree includes statistical units or objects which are recursively partitioned such to
reduce the impurity of a target or response variable as explained by a set of avail-
able predictors. To each leave of the tree is assigned a response value/class, the set
of leaves describes a partition of the given sample of objects, each path of the tree
gives the sequential conditions of the predictors measurement which is necessary
to belong to each final leave. In such a tree graph, a new objectfor that only the
predictors measurements are known can be slide down until one of the leaves where
it is possible to predict its response value/class on the basis of the prior leave’s as-
signment done in the tree growing. The quality of the prediction can be evaluated in
terms of misclassification rate or mean square error estimates based on learning sam-
ple (too optimistic), test sample (which requires large sample size), cross-validation
(for small sample size).
Main focus of recent literature is to outperform the decision/prediction rule in terms
of accuracy such to answer the bias-variance dilemma with alternative solutions.
Enhancements are provided by ensemble methods, random forest, evolutionary pro-
gramming. All these approaches do not provide one tree structure for prediction
denying the interpretability advantage of the tree graph todescribe the hierarchi-
cal dependence relationships. The final assignment of one object is induced by a
suitable combination of tree structures. Ensemble methodsare learning algorithms
that develop a population of simple models (like trees), called weak learner, from
the perturbed training set combining them to form a composite predictor, which is
generally more accurate than the single trees whence it is formed by. Ensemble of
classifiers works by constructing a set of weak learners and then classifying new
data points by taking a vote of their predictions. Even though there exist several
ways to build ensemble (Dietterich, 2000), the most popularensemble methods,
such as Bagging (Breiman, 1996), Boosting (Freund and Schapire, 1997) and Ran-
dom Forest (Breiman, 2001), work by manipulating the training examples through
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re-sampling methods. All of these algorithms aggregate theobject decisions by vot-
ing, but none of these ensemble methods allows to preserve the final tree-structure:
if we are interested in the accuracy of the prediction then wecan use an ensemble
because it is absolutely more accurate than a single decision tree, but the interpre-
tation of the the tree-structure is irreparably lost because the aggregation process
compromises the construction of a unique prediction tree structure.

3 The proposed methodology for multiple values data

3.1 The multiple values data description

Multiple values variables (MVV) are included in the category of symbolic data
(Bock and Diday, 2000). The data descriptions of the units are calledsymbolicwhen
they are more complex than the standard ones due to the fact that they contain in-
ternal variation and are structured. Symbolic data need more complex data tables
calledsymbolic data tablesbecause a cell of such data table does not necessarily
contain as usual, a single quantitative or categorical values. The symbolic variables
are usually represented as weight (probability) distributions or interval values. Let
X be a continuous variable defined on a finite supportS= [x,x], wherex andx are
the minimum and maximum values of the domain ofX.
A histogram ofX is the representation of an empirical distribution, described by a
set of pairs(Ih,πh), h = 1, . . . ,H, whereH is the number of contiguous intervals
(bins){I1, . . . , Ih, . . . , IH}, whereIh = [x;x[, in which the supportS is partitioned and
πh is the frequency associated with each interval.
A generic interval variableX is a correspondence between a setE of units and a set
of closed intervals[Xmin, Xmax], with Xmin ≤ Xmax andXmin,Xmax∈ ℜ.
In dealing with imprecise data, in the literature tree-based methods are used with
interval data as predictors by Mballo and Diday (2005), and by Limam, Diday and
Winsberg, (2003). A preliminary pre-processing of interval data is mandatory to
build the tree-based structure. This pre-processing consists either in considering the
lower bound of each interval or the upper bound of each interval. Then a normal
tree-growing procedure is done by taking as impurity measure the Kolmogorov-
Smirnov measure. As alternative pre-processing of interval data, the mean value of
each interval can be considered. Authors does not consider the possibility to have
histogram data.

3.2 The new definition of split

Tree-growing depends on the nature of both the response variable and the predictors.
Response variable governs the choice of the impurity criterion as well as predictors
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govern the way the splitting variables are defined. Traditionally the number of pos-
sible split to be generated by each predictor depends on the nature of the predictor
itself (i.e. numerical, ordinal or nominal). As the partitioning procedure produces bi-
nary splits, in the case of numerical (ordinal) predictors with N (M) distinct values
N−1 (M−1) possible binary splits can be generated. In the case of nominal predic-
tors withM distinct modalities, 2M−1−1 possible binary splits can be generated. In
our case, the predictor matrix involves both classical variables and Multiple Values
Variables, so it is necessary determine how splitting variables can be generated by
the latter variables.
Let Γ be a set ofn×Q Multiple Valued Variables, letZ be an×K random vari-
able and letY be an-dimensional vector representing the response variable. Define
X = [Γ Z] as the predictors matrix of dimensionn×P, with P= K +Q. Let Xp be
the pth predictors, withp= 1, . . . ,P.
Suppose thatXp is represented by multiple values variable of the typehistogram
data.
Let FXp i(u) be the empirical cumulative distribution function (ECDF) of the ith in-
stance of the predictorXp, and letFXp j(u) be the ECDF of thej th instance of the
same predictor. The following cases can be verified:

• FXp i(u) = FXp j(u);
• FXp i(u)< FXp j(u);
• FXp i(u)> FXp j(u).

With respect to the distribution of theith instance, to generate splitting variables we
order the instances characterized by histogram data by verifying the former inequal-
ities via the well-known T statistics of Wilcoxon test.
The splitting ternary partition is given by a joint lecture of both T-statistics and the
connectedp− value. Consider we are using theith instance as reference instance,
and we are deciding in which child node will fall down thej th instance. Indeed if
T < 0 andp−value<α, then we are considering the first case andj th instance goes
down in the left child node. On the other hand, ifT > 0 andp−value< α, then we
are considering the second case andj th instance goes down in the right child node.
If p− value> α we are considering the third case, andj th instance goes down in
the central child node. We can conclude that, if there areN distinct histograms the
number of possible splits to be generated is equal toN−2.
Suppose nowXp is thepth predictor in the data matrix, and it is represented by mul-
tiple values variable of the typeinterval data. Let Xpi

min andXpi
max be respectively the

lower and the upper bound of the interval of theith instance of the predictorXp. Let
Xp j

min andXp j
max be respectively the lower and the upper bound of the intervalof the

j th instance of the predictorXp. With respect to theith instance, the following cases
can occur:

1. Xp j
min < Xpi

min andXp j
max< Xpi

max;
2. Xp j

min > Xpi
min andXp j

max> Xpi
max;

3.
{

Xp j
min ≥ Xpi

min andXp j
min ≤ Xpi

min

}

or
{

Xp j
min ≤ Xpi

min andXp j
min ≥ Xpi

min

}
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In the first case thej th instance goes down in the left child node, in the second case
j th instance goes down in the right child node, in the third casej th instance goes
down in the central child node. As in the case of histogram data, we can conclude
that, if there areN distinct intervals the number of possible splits to be generated is
equal toN−2.

3.3 Dynamic classification trees for imprecise data

Table 1 shows the pseudo-code of the Dynamic Classification Tree for Imprecise
Data.

Let Γ be a set ofn×Q Multiple Valued Variables, letZ be an×P random variable and letY be an-dimensional vector representing the response variable. Define

X = [Γ Z] as the predictors matrix of dimensionn×P, with P= K+Q. Let Xp be thepth predictors, withp= 1, . . . ,P.
Initialize → generate root node

• While a stopping rule is not verified

– if the current node is not terminal
· for p=1:P

· if is ordinalXp ‖ is numericalXp,compute the decrease in impurity for all theN−1 splitting variables and store its maximum

· elseif is categoricalXp, compute the decrease in impurity for all the 2M−1−1 splitting variables and store its maximum
· elseif is histogramXp, compute the decrease in impurity for all theN−2 splitting variables and store its maximum
· elseif is intervalXp, compute the decrease in impurity for all theN−2 splitting variables and store its maximum
· end

· end
– Generate three or two children nodes according to the nature of the predictor generating the higher decrease in impurity computed in the previous loop.

Update the status of the generated child node (Internal-Terminal) and assign a number to each of them.
· if is terminal the generated node

· store the node
· else

· continue: generated child node becomes now a father node.
· end

– end

• end

Output → Ternary classification tree

Table 1 Pseudocode of Dynamic classification trees for imprecise data

The innovative contribution of our algorithm refers to tree-growing procedure,
specifically it refers to a new way to define the splitting variables. With respect to
explorative purposes, it means that the interpretability of partitions takes in account
a more rigorous information when MVV predictors generate splits. The intrinsic
uncertainty in pre-process such variables disappears because no pre-processing is
done to perform the analysis. About decisional purposes, none is changed with re-
spect to classical approaches. Indeed both division of the total sample in learning
sample and test sample and cross-validation procedures arepossible. Our approach
allows to such a classifier to preserve the conditions to be used with ensemble meth-
ods such as Bagging, Boosting, Random Forests, etc. (Breiman, 1996, 2001; Freund
and Schapire, 1997).
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4 A real world case

The methodology have been performed on a database of the Department of Der-
matology of the Second University of Naples. The database consists of 220 skin
lesion dermoscopic images, for which a histological diagnosis is available, with a
resolution of 768×512 pixels, divided into two classes: 86 images are relativeto
malignant melanoma and 134 of these lesions are classified asbenign lesions. The
skin lesion dermoscopic images are acquired using a charge-coupled devise camera
connected to an epiluminescence microscopy.
The dataset consists in 34 variables ordescriptors(including 11 point values, 6
intervals data and 17 histograms data), plus a binary response variable. The multi-
valued data describing the dermoscopic image database is structured as a matrix
D =

{

di,p
}

, where the rows represent the statistical units, i.e. the images, and the
columns represent the multi-valued descriptors. Each matrix cell di,p indicates the
set of values attained by theith image for thepth descriptor, that can be a scalar real
value, an interval value, or a set of histogram values.
Following the ABCD-rule of dermoscopy (Stolz et al., 1994),descriptors chosen
for characterizing different lesion classes consist of quantitative measures of asym-
metry, border, and color information extracted by dermoscopic images. More details
about ABCD-rule can be found, in example, in Bono et al., 1999, Celebi et al., 2007;
Maglogiannis and Kosmopoulos, 2006.

4.1 The results

Figure 1 shows the tree-structure of the Dynamic Classification Tree.
The figure emphasizes the way the splits are generated. For ternary splits, if the

splitting variable is generated by a histogram variable, a plot showing the Kernel
density function estimate of the typical distributions is put in the graph. The cen-
tral density function (in grey) refers to the distributionsgoing down in the central
child node. The left and the right density functions (respectively bold-black and dot-
black) refer to the distributions going down respectively in the left and right children
nodes. If the splitting variable is generated by interval data, a plot showing these in-
tervals is put in the graph. The central interval refers to images going down in the
central child node, as well as upper-left and lower-right intervals refer to images
going down respectively to the left and right children node.If the splitting variable
is generated by point variables, the the split is binary and in the figure is indicated
the cutting point. The error rate at root node is equal to 0.3909 as well as error rate
of the tree is equal to 0.1909.
Table 2 shows the DCTree in table format. First four columns indicate respectively
the node number, the node size, the children nodes generatedby the actual node and
the father of the actual node. Column named splitting predictor indicates which pre-
dictor generates the split. In parenthesis the nature of thepredictor is indicated (H
if histogram, I if interval, P if point).The column named cutting point describes the



Dynamic Classification Trees for imprecise data 7

Fig. 1 Dynamic Classification tree of dermoscopic images database

split. If the splitting predictor is a histogram data, then some descriptive informa-
tion about the distribution of the reference image is reported in the column (precisely
Min, Max, Mean, Standard Deviation, Skewness, Kurosys). Ifthe splitting predictor
is a interval data, then upper and lower bounds of the reference interval are respec-
tively reported in brackets in the column. If the splitting predictor is a point variable,
then the cutting point is reported in the column.

The last two columns refer to the misclassification ratio within node (Rt) and to
the assigned class within node.
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Node numberSize Children Father Splitting Predictor Cutting point Rt Class
0.33 145.66

1 220 2 3 4 - MagloZonaEsterna (H) 91.34 17.74 0.39 Benignant
−1.07 5.51

2 65 5 6 1 RapportoBorderDist (P) 0.589 0.20 Malignant
3 3 - 1 Terminal - 0.00 Malignant
4 152 11 12 1 Perimeter (P) 1823.67 0.21 Benignant
5 46 - 2 Terminal - 0.06 Malignant
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12 57 35 36 37 4 AsimmXY (I) [0.14 0.18] 0.44 Benignant

98.67 157.33
32 86 95 96 97 11 MagloZonaEsterna (H) 136.04 8.09 0.03 Benignant

−0.44 3.21
33 6 - 11 Terminal - 0.33 Malignant
34 3 - 11 Terminal - 0.00 Benignant
35 23 - 12 Terminal - 0.35 Benignant
36 11 - 12 Terminal - 0.09 Benignant
37 23 - 12 Terminal - 0.29 Malignant

38.00 133.33
95 73 284 285 286 32 MagloZonaIntermedia (H) 83.47 15.90 0.03 Benignant

0.87 3.36
96 1 - 32 Terminal - 0.00 Malignant
97 12 - 32 Terminal - 0.00 Benignant
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285 1 - 95 Terminal - 0.00 Malignant
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Table 2 DCTree description
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