Dynamic Classification Trees for imprecise data

Massimo Aria and Valentina Cozza

Abstract This paper provides a supervised classification tree-bastidodology to
deal with Multivalued data, specifically predictors measoents can be provided by
a functional distribution or an interval of values. Maireliature refers to symbolic
data analysis, aiming to extend standard methods suchtasiféanalysis, cluster-
ing, discriminant analysis, etc., to deal with symboliced@bles. One approach is to
define a suitable data pre-processing enabling the applicat standard methods.
A more correct approach is to define suitable methods to gegifically with un-
standard data. In the framework of supervised classificatigere are no proposal
in literature for supervised classification methods to deigh both standard and
multivalued data as well. There are only proposals basedaten gre-processing.
This paper provides a methodology to grow the so-called ByaaLASSifica-
tion TREE (D-CLASSTREE), upon suitable definition of bothpesific splitting
criterion and a tree-growing algorithm. A real world casedstwill be considered
to show the advantages of the final output and main issuesadhtérpretation. A
comparative study with older proposals will be also desttibuch to demonstrate
the stability and the better accuracy of the D-CLASSTREE.
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1 The imprecise data

The results of measurements are not precise nhumbers orsdxtbmore or less
imprecise numbers or vectors (Viertl, 1999, 2003). Imieci is different from
measurement errors or stochastic uncertainty. In the é&stae, the literature about
the statistic treatment of imprecise measurement counesalecontribution (Couso
and Sanchez, 2011; Ferraro, Colubi, Gonzalez-RodriguerzCappi, 2011; Gil et
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al., 2006). Special cases of imprecise data are both intang histogram data.
They are typical where training data comes with intrinsicentainty that might be
the result of imprecise measuring instruments, as in imagegnition framework,
human judgments, etc. We intend our approach as a 'suligttiiew of impreci-
sion formalizing the uncertainty concerning an underlyrgsp’ phenomenon.

2 Tree-based methods

Data can be hierarchically organized in a connected andtedegraph, the so-called
tree, characterized by a set of linked nodes, in which anyredes are connected
by exactly one simple path, the starting-node isribat and the end-nodes are the
leaves Two properties are satisfied: thibape propertywhere each node has a fixed
numberr of child nodes (for = 2 it is assumed a binary tree); theap property
where each node is greater than or equal to each of its chiklreording to some
comparison predicate which is fixed for the entire data stinec Trees have been
used in supervised classification and non parametric reigresEach node of the
tree includes statistical units or objects which are reeelg partitioned such to
reduce the impurity of a target or response variable as iqaay a set of avail-
able predictors. To each leave of the tree is assigned anssp@alue/class, the set
of leaves describes a partition of the given sample of objesach path of the tree
gives the sequential conditions of the predictors measeménvhich is necessary
to belong to each final leave. In such a tree graph, a new ofgjethat only the
predictors measurements are known can be slide down uetibbiine leaves where
it is possible to predict its response value/class on this ldishe prior leave’s as-
signment done in the tree growing. The quality of the préalictan be evaluated in
terms of misclassification rate or mean square error estgigtsed on learning sam-
ple (too optimistic), test sample (which requires large gl@size), cross-validation
(for small sample size).

Main focus of recent literature is to outperform the deaigioediction rule in terms
of accuracy such to answer the bias-variance dilemma widhraltive solutions.
Enhancements are provided by ensemble methods, randost, ®relutionary pro-
gramming. All these approaches do not provide one treetsmeidor prediction
denying the interpretability advantage of the tree graptdscribe the hierarchi-
cal dependence relationships. The final assignment of ojeetal induced by a
suitable combination of tree structures. Ensemble methoglgearning algorithms
that develop a population of simple models (like trees)edalveak learner, from
the perturbed training set combining them to form a compgsiedictor, which is
generally more accurate than the single trees whence itnseft by. Ensemble of
classifiers works by constructing a set of weak learners hed tlassifying new
data points by taking a vote of their predictions. Even thotlgere exist several
ways to build ensemble (Dietterich, 2000), the most popafsemble methods,
such as Bagging (Breiman, 1996), Boosting (Freund and $&hd®97) and Ran-
dom Forest (Breiman, 2001), work by manipulating the tragnexamples through
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re-sampling methods. All of these algorithms aggregateliject decisions by vot-
ing, but none of these ensemble methods allows to presesvientil tree-structure:
if we are interested in the accuracy of the prediction thercareuse an ensemble
because it is absolutely more accurate than a single dedise, but the interpre-
tation of the the tree-structure is irreparably lost beeah®& aggregation process
compromises the construction of a unique prediction tnegstre.

3 The proposed methodology for multiple values data

3.1 The multiple values data description

Multiple values variables (MVV) are included in the categaf symbolic data
(Bock and Diday, 2000). The data descriptions of the ungsatedsymboliovhen
they are more complex than the standard ones due to the &ahty contain in-
ternal variation and are structured. Symbolic data neecernomplex data tables
calledsymbolic data tablebecause a cell of such data table does not necessarily
contain as usual, a single quantitative or categoricalegllihe symbolic variables
are usually represented as weight (probability) distidng or interval values. Let
X be a continuous variable defined on a finite supfe#t [x,X], wherex andx are
the minimum and maximum values of the domairXof

A histogram ofX is the representation of an empirical distribution, déssuliby a
set of pairs(ly, i), h=1,...,H, whereH is the number of contiguous intervals
(bins){l1,...,n,...,In}, wherel, = [x;X[, in which the suppor8is partitioned and
T is the frequency associated with each interval.

A generic interval variablX is a correspondence between aBeff units and a set
of closed interval$Xmin, Xmax, With Xmin < Xmax andXmin, Xmax € 0.

In dealing with imprecise data, in the literature tree-lblasethods are used with
interval data as predictors by Mballo and Diday (2005), apdlimam, Diday and
Winsberg, (2003). A preliminary pre-processing of intérdtata is mandatory to
build the tree-based structure. This pre-processing stasither in considering the
lower bound of each interval or the upper bound of each iatefthen a normal
tree-growing procedure is done by taking as impurity meashe Kolmogorov-
Smirnov measure. As alternative pre-processing of intetata, the mean value of
each interval can be considered. Authors does not condidgudssibility to have
histogram data.

3.2 The new definition of split

Tree-growing depends on the nature of both the responssi@and the predictors.
Response variable governs the choice of the impurity coitears well as predictors
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govern the way the splitting variables are defined. Tradéily the number of pos-
sible split to be generated by each predictor depends onatiueenof the predictor
itself (i.e. numerical, ordinal or nominal). As the paditing procedure produces bi-
nary splits, in the case of numerical (ordinal) predictoithw (M) distinct values
N —1 (M —1) possible binary splits can be generated. In the case ofrabpredic-
tors withM distinct modalities, ¥~ — 1 possible binary splits can be generated. In
our case, the predictor matrix involves both classicalaldes and Multiple Values
Variables, so it is necessary determine how splitting e can be generated by
the latter variables.

Let ' be a set oh x Q Multiple Valued Variables, leZ be an x K random vari-
able and leY be an-dimensional vector representing the response varialdén®
X = [I Z] as the predictors matrix of dimensiorx P, with P = K + Q. Let XP be
the p'" predictors, withp=1,...,P.

Suppose thaXP is represented by multiple values variable of the thjmogram
data

Let Fxp_i(u) be the empirical cumulative distribution function (ECDFfee it" in-
stance of the predictotP, and letFxp_j(u) be the ECDF of thg'" instance of the
same predictor. The following cases can be verified:

o Fxp_i(u) = Fxp_j(u);
o Fxpi(u) < Fxe_j(u);
o Fxpi(u) > Fxp_j(u).

With respect to the distribution of tH# instance, to generate splitting variables we
order the instances characterized by histogram data byweyithe former inequal-
ities via the well-known T statistics of Wilcoxon test.
The splitting ternary partition is given by a joint lecturebmth T-statistics and the
connectedp — value Consider we are using th& instance as reference instance,
and we are deciding in which child node will fall down t}i instance. Indeed if
T < 0andp—value< a, then we are considering the first case @fidnstance goes
down in the left child node. On the other handTif>- 0 andp— value< a, then we
are considering the second case @fidnstance goes down in the right child node.
If p—value> a we are considering the third case, ajfdlinstance goes down in
the central child node. We can conclude that, if thereNadistinct histograms the
number of possible splits to be generated is equil to2.
Suppose now P is the pt" predictor in the data matrix, and it is represented by mul-
tiple values variable of the typaterval data Let X" andXhax be respectively the
lower and the upper bound of the interval of iHeinstance of the predictotP. Let

Pl andXhix be respectively the lower and the upper bound of the intesk/tie
j"instance of the predictotP. With respect to thé" instance, the following cases
can occur:

1. Xhh < XHin andXhhx < Xhax
I 1.
2. XPL > XPandXRl > XPax
pj pi pj pi pj pi Pj pi
3. { in2 inmj inS in}—r{xmingxminmj in2 in}



Dynamic Classification Trees for imprecise data 5

In the first case th¢'" instance goes down in the left child node, in the second case
jt" instance goes down in the right child node, in the third ci%énstance goes
down in the central child node. As in the case of histogram,daée can conclude
that, if there aréN distinct intervals the number of possible splits to be getest is
equal toN — 2.

3.3 Dynamic classification trees for imprecise data

Table 1 shows the pseudo-code of the Dynamic Classificatier for Imprecise
Data.

Let I be a set oh x Q Multiple Valued Variables, leZ be an x P random variable and léf be an-dimensional vector representing the response varial#én®

X = [I" Z] as the predictors matrix of dimensian P, with P = K + Q. LetXP be thep’h predictors, withp=1,..., P.
Initialize — generate root node

e  While a stopping rule is not verified

- if the current node is not terminal
for p=1:P
B if is ordinal X P |lis numericalX P ,compute the decrease in impurity for all tNe- 1 splitting variables and store its maximum
elseif is categoricak P, compute the decrease in impurity for all 2l -1 splitting variables and store its maximum
elseif is histogranX P, compute the decrease in impurity for all te- 2 splitting variables and store its maximum
elseif is intervaX P, compute the decrease in impurity for all te- 2 splitting variables and store its maximum
. end
end
—  Generate three or two children nodes according to the mafuthe predictor generating the higher decrease in impadmputed in the previous loop.
Update the status of the generated child node (Internahifd) and assign a number to each of them.
if is terminal the generated node
store the node
else
continue: generated child node becomes now a father node.
. end
- end

e end

Output — Ternary classification tree

Table 1 Pseudocode of Dynamic classification trees for imprecise data

The innovative contribution of our algorithm refers to tgm@wing procedure,
specifically it refers to a new way to define the splitting ahtes. With respect to
explorative purposes, it means that the interpretabififyastitions takes in account
a more rigorous information when MVV predictors generatktspThe intrinsic
uncertainty in pre-process such variables disappearaibea# pre-processing is
done to perform the analysis. About decisional purposese ®changed with re-
spect to classical approaches. Indeed both division ofdta sample in learning
sample and test sample and cross-validation procedurg®saséle. Our approach
allows to such a classifier to preserve the conditions to bd with ensemble meth-
ods such as Bagging, Boosting, Random Forests, etc. (Bneit®86, 2001; Freund
and Schapire, 1997).
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4 A real world case

The methodology have been performed on a database of thetBepd of Der-
matology of the Second University of Naples. The databassists of 220 skin
lesion dermoscopic images, for which a histological diaimds available, with a
resolution of 768« 512 pixels, divided into two classes: 86 images are reldtve
malignant melanoma and 134 of these lesions are classifiedragn lesions. The
skin lesion dermoscopic images are acquired using a cluangeled devise camera
connected to an epiluminescence microscopy.

The dataset consists in 34 variablesdascriptors(including 11 point values, 6
intervals data and 17 histograms data), plus a binary regpeariable. The multi-
valued data describing the dermoscopic image databaseu@wsted as a matrix
D= {di,p}, where the rows represent the statistical units, i.e. treges, and the
columns represent the multi-valued descriptors. Eachixnegitl d; , indicates the
set of values attained by tfif@ image for thep!" descriptor, that can be a scalar real
value, an interval value, or a set of histogram values.

Following the ABCD-rule of dermoscopy (Stolz et al., 199dgscriptors chosen
for characterizing different lesion classes consist ofngjtetive measures of asym-
metry, border, and color information extracted by dermpgcimages. More details
about ABCD-rule can be found, in example, in Bono et al., 1989ebi et al., 2007;
Maglogiannis and Kosmopoulos, 2006.

4.1 The results

Figure 1 shows the tree-structure of the Dynamic Classifindfree.

The figure emphasizes the way the splits are generated. fraryesplits, if the
splitting variable is generated by a histogram variableloa ghowing the Kernel
density function estimate of the typical distributions i# pn the graph. The cen-
tral density function (in grey) refers to the distributiogsing down in the central
child node. The left and the right density functions (respety bold-black and dot-
black) refer to the distributions going down respectivelytie left and right children
nodes. If the splitting variable is generated by intervahda plot showing these in-
tervals is put in the graph. The central interval refers tages going down in the
central child node, as well as upper-left and lower-righéiivals refer to images
going down respectively to the left and right children ndd¢he splitting variable
is generated by point variables, the the split is binary anithé figure is indicated
the cutting point. The error rate at root node is equal.8909 as well as error rate
of the tree is equal t0.0909.

Table 2 shows the DCTree in table format. First four colunmaiciate respectively
the node number, the node size, the children nodes gendénathd actual node and
the father of the actual node. Column named splitting ptediadicates which pre-
dictor generates the split. In parenthesis the nature optbdictor is indicated (H
if histogram, | if interval, P if point). The column named oy point describes the
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Fig. 1 Dynamic Classification tree of dermoscopic images database

split. If the splitting predictor is a histogram data, themm& descriptive informa-
tion about the distribution of the reference image is regmbih the column (precisely
Min, Max, Mean, Standard Deviation, Skewness, Kurosyshdfsplitting predictor
is a interval data, then upper and lower bounds of the refererterval are respec-
tively reported in brackets in the column. If the splittingg@ictor is a point variable,
then the cutting point is reported in the column.

The last two columns refer to the misclassification ratichiminode (Rt) and to
the assigned class within node.
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Node numbefSize| Children |Fathe Splitting Predictor Cutting point | Rt Class

0.33 14566

1 220 234 - |MagloZonaEsterna (H) | 9134 1774(0.39|Benignan
—1.07 551

2 65 56 1 |RapportoBorderDist (P) 0.589 0.20| Malignant]

3 3 - 1 Terminal - 0.00| Malignant]

4 152 1112 1 |Perimeter (P) 182367 0.21| Benignan

5 46 - 2 Terminal - O.D€| Malignant]

6 19 - 2 Terminal - 0.37| Benignan

11 95| 323334 4 [AsimmXYRosso (1) [0.20 023]]0.06| Benignan

12 57 | 353637 4 |AsimmXY (I) [0.14  018]]0.44| Benignan
9867 15733

32 86 | 959697 11 [MagloZonaEsterna (H) (13604  809(0.03|Benignany
—0.44 321

33 6 - 11 Terminal - 0.33| Malignant|

34 3 - 11 Terminal - 0.00| Benignanf

35 23 - 12 Terminal - 0.35| Benignanf

36 11 - 12 Terminal - 0.09| Benignani

37 23 - 12 Terminal - 0.29| Malignant|
3800 13333

95 73 |28428528¢ 32 |MagloZonalntermedia (H) 8347 1590|0.03|Benignan{
0.87 336

96 1 - 32 Terminal - 0.00| Malignant]

97 12 - 32 Terminal - 0.00| Benignani

284 29 - 95 Terminal - 0.03| Benignanf

285 1 - 95 Terminal - 0.00| Malignant|

286 43 - 95 Terminal - 0.00| Benignanf

Table 2 DCTree description
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