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Abstract The statistical analysis of covariance operators in a functional data anal-
ysis setting is considered. Many suitable distances to compare covariance operators
are presented and in particular the problem of estimating the average covariance op-
erators among different groups is addressed. Finally, an applied problem in which
this methodology has proved useful is introduced, namely, exploring phonetic re-
lationships among Romance languages looking at covariance operators across fre-
quencies.
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1 Introduction

The aim of this work is to set up a framework for the comparison of covariance
operators on L2(Ω), Ω ⊆R. This problem arises in Functional Data Analysis when
features of curve populations lie in their covariance structure rather than in the mean
function. In Section 2 some definitions and properties of operators on L2(Ω) are
recalled. Section 3 illustrates suitable distances to measure differences between co-
variance operators and to explore their properties. In Section 4, the application of the
proposed methodology to a linguistic problem is introduced and some preliminary
results are shown.
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2 Some remarks on compact operators on L2(Ω)

In this section we review some properties and definitions that will be of use when
describing our proposed methodology. More details and proofs can be found, e.g.,
in Zhu (2007).

Definition 1. Let B1 be the closed ball in L2(Ω), i.e. it consists in all f ∈ L2(Ω)
so that || f ||L2(Ω) ≤ 1. A bounded linear operator T : L2(Ω)→ L2(Ω) is compact if
T (B1) is compact in the norm of L2(Ω). A bounded linear operator T is self-adjoint
if T = T ∗.

An important property of compact operators on L2(Ω) is the existence of a
canonical decomposition. This means that two orthonormal bases {uk}k,{vk}k exist
so that

T f =
+∞

∑
k=1

σk〈 f ,vk〉uk,

or, equivalently,
T vk = σkuk,

where 〈., .〉 indicates the scalar product in L2(Ω). {σk} is called the sequence of
singular value for T . If the operator is self-adjoint, a basis {vk}k exists such that

T f =
+∞

∑
k=1

λk〈 f ,vk〉vk,

or, equivalently,
T vk = λkvk

and {λk} is called the sequence of eigenvalues for T .
A compact operator T is said to be trace class if

trace(T ) :=
+∞

∑
k=1
〈Tek,ek〉<+∞

for an orthonormal basis {ek}. It has been proved that the definition is independent
from the choice of the basis and

trace(T ) =
+∞

∑
k=1

σk

where {σk}k are singular values for T . We indicate with S(L2(Ω)) the space of the
trace class operator on L2(Ω).

A compact operator T is said to be Hilbert-Schmidt if its Hilbert-Schmidt norm
is bounded, i.e.

||T ||2HS = trace(T ∗T )<+∞.

This is a generalization of the Frobenius norm for finite-dimensional matrices.
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Definition 2. A bounded linear operator R on L2(Ω) is said to be unitary if

||R f ||L2(Ω) = || f ||L2(Ω) ∀ f ∈ L2(Ω)

We indicate with SO(L2(Ω)) the space of unitary operators on L2(Ω).
Let now f be a random variable which takes values in L2(Ω), Ω ⊆ R, such that

E[||f||2L2(Ω)
]<+∞. Then, the covariance operator Cf(s, t) = cov(f(s), f(t)) is a trace

class compact operator on L2(Ω) (see Bosq, 2000, Section 1.5).

3 Distances between covariance operators

In this section novel distances to compare trace class compact operators are pro-
posed. These are generalizations to the functional setting of metrics that have been
proved useful for the case of positive definite matrices.

Distance between kernels in L2(Ω)

Every covariance operator S on L2(Ω) can be associated with an integral kernel
s(x,y) ∈ L2(Ω ×Ω), so that

S f =
∫

Ω

s(x,y) f (y)dy, ∀ f ∈ L2(Ω).

Thus, distance between covariance operators can be naturally defined with the
distance between kernels in L2(Ω),

dL(S1,S2) = ||s1− s2||L2(Ω) =

√∫
Ω

∫
Ω

(s1(x,y)− s2(x,y))2dxdy.

This distance is correctly defined, since it inherits all the properties of the distance
in the Hilbert space L2(Ω). However, it does not exploit in any way the particular
structure of the covariance operators and therefore it may not highlight the signifi-
cant differences between covariance structures.

Spectral distance

A second possibility is to see the covariance operator as an element of L(L2(Ω)),
the space of the linear bounded operators on L2(Ω). It follows that the distance
between S1 and S2 can be defined as the operator norm of the difference. We recall
that the norm of a self-adjoint bounded linear operator on L2(Ω) is defined as

||T ||L(L2(Ω)) = sup
v∈L2(Ω)

|〈T v,v〉|
||v||2L2(Ω)
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and for a covariance operator it coincides with the absolute value of the first (i.e.
largest) eigenvalue. Thus,

dL(S1,S1) = ||S1−S2||L(L2(Ω)) = |λ̃1|

where λ̃1 is the first eigenvalue of the operator S1−S2. dL(., .) generalizes the ma-
trix spectral norm which is often used in the finite dimensional case (see, e.g., El
Karoui, 2008). This distance takes into account the spectral structure of the covari-
ance operators, but it seems somehow restrictive to focus only on the behavior on
the first mode of variation.

Procrustes size-and-shapes distance

In Dryden et al. (2009), a Procrustes size-and-shape distance is proposed to com-
pare two positive definite matrices. Our aim is to generalize this distance to the
case of covariance operators on L2(Ω). Let S1 and S2 be two trace class covariance
operators on L2. We define the Procrustes distance in S(L2(Ω)) as

dP(S1,S2)
2 = inf

R∈SO(L2(Ω))
||L1−L2R||2HS = inf

R∈SO(L2(Ω))
trace((L1−L2R)∗(L1−L2R)),

where ||.||HS indicates the Hilbert-Schmidt norm on L2(Ω) and Li are so that
Si = L∗i Li. The evaluation of the Procrustes distance asks for the solution of a mini-
mization problem. However, an analytical solution is available and the distance has
therefore an expression based on the canonical decomposition of the operator L∗2L1.
The unitary operator R̃ that minimizes ||L1−L2R||2HS is defined by

R̃vk = uk ∀k = 1, . . . ,+∞.

where {uk}k,{vk}k are the orthogonal bases in the canonical decomposition of L∗2L1.

Proposition 1. The Procrustes distance in S(L2(Ω)) is

dP(S1,S2)
2 = ||L1||2HS + ||L2||2HS−2

+∞

∑
k=1

σk

where σk are the singular values of the compact operator L∗2L1.

Square root operator distance

We can also generalize the square root matrix distance (see Dryden et al., 2009) to
compare S1,S2 ∈ S(L2(Ω)). Since S1/2

i is an Hilbert-Schmidt operator,

dR(S1,S2) = ||S1/2
1 −S1/2

2 ||HS
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This is a special case of the Procrustes distance above, when no unitary transfor-
mation is allowed.

3.1 Averaging of covariance operators

Once appropriate distances for dealing with covariance operators have been defined,
many statistical tools can be developed, conveniently generalizing traditional meth-
ods based on Euclidean distance. For the sake of brevity, here only the case of esti-
mating the average from a sample of covariance operators is presented. Let S1, . . . ,Sg
be the covariance operators for g different groups. Then, a possible estimator of the
common covariance operator Σ may be

Σ̂ =
1

n1 + · · ·+ng
(n1S1 + · · ·+ngSg).

However, this formula arises from the minimization of square Euclidean deviations,
weighted with the number of observations. If we choose a different distance to com-
pare covariance operators, it is more coherent to average covariance operators with
respect to the chosen distance. A least square estimator for Σ can be defined for a
general distance d(., .),

Σ̂ = argmin
S

g

∑
i=1

nid(S,Si)
2.

The actual computation of the sample Frechét mean Σ̂ j depends on the choice of the
distance d(., .). In general, it asks for the solution of a high dimensional minimiza-
tion problem but some distances allows for an analytic solution while for others
efficient minimization algorithms are available. For those concerning Kernel dis-
tances, it is easy to see that the L2(Ω) kernel of the Frechét average is obtained with
the weighted average of the kernels s1(s, t), . . . ,sg(s, t) of the data, i.e.

σ̂(x,y) =
1

n1 + · · ·+ng
(n1s1(x,y)+ · · ·+ngsg(x,y)).

For the Square root distance, the following result can be proved.

Proposition 2.

Σ̂ = argmin
S

g

∑
i=1

nidS(S,Si)
2 = (

1
G

g

∑
i=1

niS
1
2
i )

2. (1)

where G = n1 + · · ·+ng.

The Procrustes mean can be obtained by an adaptation of the algorithm proposed
in Gower (1975) or Ten Berge (1977). This works very well in practice if the algo-
rithm is initialized with the estimate provided by (1).
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4 Exploring phonetic relationships among Romance languages

The traditional way of exploring relationships among languages consists in looking
at textual similarity. However, this often neglects any phonetic characteristics of the
languages. Here a novel approach is proposed to compare languages on the basis of
phonetic structure.

In particular, people speaking different languages (French, Italian, Portuguese,
Iberian Spanish and American Spanish) are registered while pronouncing words
corresponding with the numbers from one to ten in each language. The output of the
registration for each word and for each speaker consist in the intensity of the sound
over time and frequencies.

Fig. 1 Frechét average along time of covariance operators of log-spectrogram among frequencies
for five Romance languages, using square root distance.

The aim is to use this data to explore linguistic hypotheses concerning the re-
lationship among different languages. However, while many possible phonetic fea-
tures may be of interest, it has been shown that covariance operators associated
with frequencies can provide some phonetic insight (Hajipantelis et al., 2012). Fre-
quency covariances indeed can summarize phonetic information for the language,
disregarding particular characteristics of speakers and words. For the scope of this
work, we focus on the covariance operators among frequencies obtained from the
log-spectrogram with estimates being obtained using the sample of all speaker of
the language. We consider different time points as replicates of the same covariance
operator among frequencies. It is clear that this is a major simplification of the rich
structure in the data but it already leads to some interesting conclusions. Here some
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preliminary results are reported, focusing on the covariance operator for the word
“one”.

Fig. 2 Left: Distance matrix among Frechét average of Fig. 1, obtained with Square root dis-
tance. Right: Dendrogram obtained from distance matrix using an average linking, where I=Italian,
F=French, P=Portuguese, SA=American Spanish, SI=Iberian Spanish.

Fig. 1 shows the covariance operator estimated for each language via Frechét
averaging along time, using square root distance, for the word “one”. Fig. 2 shows
dissimilarity matrix among average covariance operators for each language and the
correspondent dendrogram, while Fig. 3 compares a two-dimensional projection of
the data obtained with a classical (metric) multidimensional scaling with the map
coming from linguistic experts, containing information about historical and geo-
graphical relationship among languages. Indeed, it seems that focusing on the co-
variance operator captures some important information about languages. There is an
overall similarity between the map predicted by experts and relationships among co-
variance structures. However, some unexpected features may suggest new research
lines. For example, it is worth to notice that Portuguese covariance structure is a
considerable distance from all the others, thus highlighting particular linguistic in-
fluences on the language.

5 Conclusions

In this work the problem of dealing with the covariance operator has been addressed.
The choice of the appropriate metric is crucial in the analysis of covariance opera-
tors. Here some suitable metrics have been proposed and their properties have been
highlighted. On the basis of appropriate metric, statistical methods can be devel-
oped to deal with covariance operators in the functional data analysis framework.
The notable case of estimating the average from a sample of covariance operators is
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Fig. 3 Left:Map of languages built by linguistic experts using historical and geographical in-
formation. Some languages are shown for whom phonetic data are not available. Right: Bidi-
mensional metric multidimensional scaling. The extreme behavior of the Portuguese language
lead to a slightly difference configuration. Label correspond to languages: I=Italian, F=French,
P=Portuguese, SA=American Spanish, SI=Iberian Spanish.

illustrated. Moreover, in many applications, the covariance operator itself is the ob-
ject of interest, as illustrated by the linguistic data of Section 4. Using the square root
distance between covariance operator among frequencies, some significant phonetic
features of Romance languages have been found.
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