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Abstract A major concern in releasing microdata sets is protecting the privacy of
individuals in the sample. Consider a data set in the form of a high-dimensional con-
tingency table. If an individual belongs to a cell with small frequency, an intruder
with certain knowledge about the individual may identify him and learn sensitive
information about him in the data. To estimate the risk of such breach of confi-
dentiality we introduce several nonparametric models which represent progressive
extensions of the one adopted by Skinner and Holmes (1998). The latter is a Pois-
son model with rates modeled through a mixed effects log-linear model with normal
random effects. In the first extension, we assume Dirichlet process random effects
and, mimicking Skinner and Holmes (1998), we keep the fixed effects constant.
Next, we relax the latter assumption and consider a model all effects of which are
unknown. In both extended models the total mass parameter of the Dirichlet process
is also unknown. The MCMC methods used for inference are extensively discussed.
An application to real data concludes the article.
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1 Introduction

A major concern in releasing files of microdata obtained by sample surveys is pro-
tecting the privacy of the subjects in the sample. The information contained in the
files to be released consists of a set of identifying variables, usually categorical,
along with some sensitive variables. The subset of identifying variables whose val-
ues in the population are also available to potential intruders from a source which
is external to the data under consideration is referred to as the set of key variables.
Using the released data, an intruder with certain knowledge about a subject may
identify him/her, thereby learning sensitive information about the subject carried by
the released data.

Consider the contingency table representing the cross-classification of individu-
als by the key variables: if an individual belongs to a cell with small sample fre-
quency, a disclosure may occur. Often, the risk of such a breach of confidentiality is
measured by considering only cell frequencies of 1 (sample uniques) in the table of
key variables. Note, however, that such low frequencies may arise merely because
of sampling and therefore it is not sufficient for a record to be at risk to be a sample
unique.

In this article we denote by f; and Fj respectively the sample and population
frequencies in the k-th cell of the contingency table of key variables, and by K the
total number of cells. Our goal is to estimate global risks of re-identification, or
disclosure risks, defined as [15]

K

1= Y I(fi=1)Pr{F=1]fy =1}, (D

k=1

which is the expected number of sample uniques which are also population uniques,
and

K
=) I(fi=DE(/F|fi =1),
k

which is the expected number of correct guesses if each sample unique is matched
with an individual randomly chosen from the corresponding population cell. Usu-
ally, those risks are estimated using parametric models, often based on the Pois-
son distribution. The work of Bethlehem er al. [1] represents the first approach to
defining a statistical model for samples where the identifying variables form a con-
tingency table. The model is a hierarchical Poisson-Gamma superpopulation model
where Fy, ~ Poisson(A;) and fi|Fi ~ binomial (Fy,7) with known constant sampling
probability 7. The model was used to deduce (1) and can be seen as an approxima-
tion to the Dirichlet-multinomial model analysed by Takemura [16].

A common feature of the models just described is the assumption of exchange-
ability of cells of the population contingency table, implying that all cells with the
same sample frequency are assigned the same risk estimate. Skinner and Holmes
[15] and Forster and Webb [4] whithin a Bayesian formulation and Skinner and
Shlomo [14] in a frequentist setting introduce a log-linear model for the expected
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cell frequencies that overcomes this problem. Rinott and Shlomo [12], instead, pro-
pose a generalized negative binomial model with local neighbourhood smoothing.

2 Nonparametric Log-linear Models for disclosure risk
estimation

As shown in the previous section, many relevant models in the disclosure literature
are parametric. In this work, we explore the possibility of dealing with this issue in
a Bayesian nonparametric context, extending the model and the estimation method
introduced by Skinner and Holmes [15]. We briefly review the work in [15] and then
report the proposed nonparametric extensions.  Assuming that Fy ~ Poisson(Ay)
and fj ~ Poisson(mA;) independently for k = 1,..,K, [15] model the parameters A,
through a log-linear model with mixed effects:

Me=exp(), M =wi B+ . ()

where wy is a g x 1 design vector depending on the values of the key variables in
cell k, B is a g x 1 parameter vector (typically main effects and low-order interac-
tions of the key variables), and ¢ is a random effect accounting for cell specific
deviations. The sampling fraction 7 is supposed to be known. Finally, [15] assume
that ¢ ~ iid .4 (0,02). This implies 4, ~ Lognormal (w/, 3, 6?), independently for
k=1,..,K.

The goal of [15] is to estimate 7}, whose summands Pr{F; = 1|f; = 1}, hereafter
denoted by 7y 4, are given by e~ (=M% _Their estimation strategy is as follows:

- preliminary estimates (3, 62) of B and o2 are obtained from the sample frequen-
cies fj via iterative proportional fitting and by a conditional application of the mo-
ment method respectively. Sometimes, however, the value of 67 turns out to be neg-
ative and, in this case, the authors suggest to use a log-linear model without random
effects; .

- the pair (w},,0?) is substituted by (w3, 62) in the Lognormal prior;

- different estimates of the per record risk of disclosure 7 j are derived:

1 / 3)2
feflke*ﬁ(l”gkk*wkﬁ) dl

Tix = ; — ; (3
S e*”lkefma(’gl"fwkﬁ)zdlk
obtained from the posterior of A;
W’lﬁfiz
%l’k:ef(lfn)e P2 ’ (4)

obtained from the prior expected value of A;

wh B
By =e (oMt Q)
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obtained ignoring the randomness of A; (plug-in estimate).

Equation (3) is an empirical Bayes estimate of 7j x, equation (4) is a simpler’ em-
pirical Bayes estimate of 7, and, finally, equation (5) has to be used when the
conditional moment method produces negative values of 62. In short, this is a two-
stage estimation procedure where, in the first stage, the association among cells is
exploited to estimate the hyper-parameters of the Lognormal prior, while, in the sec-
ond (and completely separate) stage, the estimates of 7j ; are obtained cell by cell,
independently.

More recently, Skinner and Shlomo [14] resort to a log-linear model without ran-
dom effects, so that 7 4 is always estimated by equation (5), and a similar estimate
is used for the terms in 1, i.e. E(1/F|fy =1) = m(—e“’”m).

In our paper, we go back to the model in Skinner and Holmes [15] and, all other
things being equal, we assume that the distribution of the random effects, say G,
is unknown and a priori distributed according to a Dirichlet process & with base
probability measure Gy and total mass parameter m [3],

|G~ iid G, G~ Z(mx Gy). (©6)

Since m controls the variance of the process, in practice Gy specifies one’s ’best
guess’ about an underlying model of the variation in ¢, and m specifies the extent
to which G holds. We consider two different extensions of the Skinner and Holmes
model by introducing different specifications for Gy and the prior distribution of
B. In the first extension, we fix B = By, where Py, is the maximum likelihood
estimate of the parameter vector, and assume Gy = .# (0, 62) with unknown vari-
ance 2. This extension is directly inspired by both the structure of the model and
the estimation strategy in [15]. Therefore, the corresponding risk estimates will be
referred to as nonparametric empirical Bayes estimates of the risk and represent a
generalization of (3). In the second extension we assume that the fixed effects are
unknown with a normal prior distribution. To overcome identifiability problems, we
follow Li er al. [7] and partition the vector  to separate the intercept term, By, from
main effects and interaction terms, referred to as Beovariaress B = (Bos Beovariates) -
We assume a reasonably vague Gaussian prior on Beovariares (-4 (0,10)) and set
Go = A (Bo,6?). In turn, the prior on By is taken to be .#'(0,10) and the prior
on 6 to be invGamma(1, 1). Finally, we assume a Gamma(1, 1) prior on .

Under these assumptions, in the more general case, the likelihood turns out to be
(see Lo [9] and Liu [8]),

L(BID = CZI% P TIr ) [ o6, 18.0)4G0(0)

where C is a partition of cells {1,..,K} in ¢ groups (or clusters), n; is the number of
observations in the j-th cluster, 1 <n; < K, and finally

pElB.o) =TI R
’ |

kecluster j fk :
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In the likelihood we observe that the same random effect is assigned to all cells
belonging to the same cluster, and that the number of such partitions of the K cells
is unknown.

Now, for each partition C in c clusters, we introduce a K x ¢ allocation matrix
A such that entries a;,; = 1 when the random effect ¢ is from cluster j and zero
otherwise. Then, setting ¢y = 1); when ¢y € clusterj, we have ¢ = An, and the
likelihood can be rewritten as

K m

c=1 Aed,

c K 1 , _m(whB+(An)y)
[Tr () [ TT et emie = g,
=1 =1 Jk:

where 7, is the set of all allocation matrices A.

In this work, we adopt a Bayesian treatment to evaluate the re-identification risk.
In order to keep the notation uncluttered, let 6 denote the set of all parameters in a
given model. A Bayesian treatment of the models above described allows to evaluate
the terms in the re-identification risks 7; and T, as:

PHE=11fc =18} = [ Pr{F.=11fc=1.6}p(6]0)d0 9

EQ/AIfi=1.0) = [ EQ/RIfi=1,0)p(6]0)d6. ®)

Those expressions show how it is possible to evaluate 7| and 7, by integrating out
all model parameters, and the importance of the role played by the posterior distri-
bution p(0|f). Given a prior on the parameters p(6), we can readily employ Bayes’
theorem and obtain the posterior distribution as p(8|f) = Z ' p(f|8)p(8), where Z
is a proper normalizing constant to ensure that the right hand side is a probability
density in the parameter space.

Obtaining the posterior p(6|f) analytically is intractable, so we propose to
evaluate eq. 7 and eq. 8 by means of Monte Carlo integration [10]. Denote by
{0 ...,6™W} a set of h samples from the posterior distribution p(6|f). The
Monte Carlo estimates of 7 and 8 are simply + Y" | Pr{F, = 1|fi = I, 6"}, and
FYLE(1/Flfi=1,61).

In order to obtain samples from the posterior distribution p(6|f), we propose to
use Markov chain Monte Carlo (MCMC) techniques [10]. In particular, we propose
to use a Gibbs sampler where we sample one group of parameters at a time, namely
B|rest, ¢ |rest, m|rest, (By, 02)|rest. Convergence of the chains was checked using the
Gelman and Rubin’s potential scale reduction factor (R; [5]), by running 10 parallel
chains comprising 10,000 iterations and assessing that chains had converged when
R < 1.1 for all the parameters. According to this criterion, all chains converged
within a few thousands of iterations that were then discarded before evaluating the
risk scores. The proposed Gibbs sampler steps are briefly discussed next.
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Sampling 3 — Given the form of the Poisson likelihood, it is not possible to
sample 3 using an exact Gibbs step, and so called Metropolis within Gibbs sam-
plers need to be employed [13]. Recent work shows that it is possible to effi-
ciently sample from the posterior distribution of parameters of linear models us-
ing the so called manifold MCMC methods [6]. Briefly, such samplers exploit the
curvature of the log-joint density by constructing a proposal mechanism on the
basis of the Fisher Information of the model (see [6] for further details). In this
work we adopt Simplified Manifold Metropolis Adjusted Langevin Algorithm (S-
MMALA) to sample B, which simulates a diffusion on the statistical manifold.
Define M to be the metric tensor obtained as the Fisher Information of the model
plus the negative Hessian of the prior, and € to be a discretization parameter. SM-
MALA is essentially a Metropolis-Hastings sampler, with a position dependent pro-
posal akin to the Newton method in optimisation p(8'|B) = A4 (B'|u,€*M 1), with

u=p+ %M ~!Vglog[p(f|B,rest)]. Gradient and metric tensor can be computed in
linear time in the number of cells K and therefore the method scales well to large
data sets.

Sampling ¢ — The representation of the random effects through the allocation
matrix A allows to apply simple sampling schemes as in [11] to obtain samples
from the posterior of the random effects. In this work we adopted Algorithm 5 in
[11], as it is easy to implement and as it achieves satisfactory performance in the
given application.

Sampling m — In the literature, it has been often reported that inference in models
involving Dirichlet Processes is heavily affected by the mass parameter m, and that
setting it by means of Maximum Likelihood is bound to yield poor results [8]. Rather
than fixing this parameter, we propose to sample from its posterior distribution and
to account for uncertainty about it in the evaluation of 7; and 7,. In order to do that,
we log-transform m and sample v, = log(m) instead, using a standard Metropolis-
Hastings sampler.

Sampling ) and 6% — Given that we chose a Gaussian base measure, by impos-
ing a Gaussian prior on the mean 3y and an inverse gamma prior on the variance
o7 of the base measure, we can exploit conjugacy in the sampling and obtain the
conditional distribution of By and 62 in closed form.

3 Results and Discussion

In this section, we compare the proposed models by applying them to a random
sample drawn from N = 450,238 individuals (source: Work Histories Italian Panel,
a linked employer-employee longitudinal database built upon a 1% sample of the
National Social Security Administration archives and treated here as the popu-
lation). From this population, we consider a sampling fraction 7 = 0.1 yielding
n = 45,023, and five key variables (number of categories in parentheses): area (4),
sex (2), age (11), ethnicity (5), and economic activity (9), giving K = 3,960. Next,
we reconsider the same key variables except for age that is grouped in 6 bands, giv-
ing K =2,160. Table 1 presents true and estimated values of 7; and 7, for these two
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Table 1 Comparison of estimated values of 7; and 7, for the two settings analysed (K =
2,160; K = 3,960). True values of the global risks are 7; = 18 and 7, = 50.1 in the data set with
K =2,160, and 71 = 39 and 1, = 94.4 in the data set with K = 3,960.

K=2,160 K =3,960
Model Intercept Log-linear model 71 T T (7
P Yes (0] 0.0 1.0 0.0 3.2
P Yes I 20.4 44.5 32.0 76.9
P Yes 11 21.6 50.2 32.5 84.8
NP Emp NZM Yes 1 19.6 48.2 32.6 85.8
NP Emp NZM Yes I 17.5 46.1 26.0 78.4
NP ZM No - 8.0 36.6 13.5 69.1
NP ZM No I 22.2 52.2 334 88.0
NP ZM No 11 20.5 49.5 26.6 78.5
NP NZM No - 9.6 42.7 16.6 76.6
NP NZM No 1 21.8 51.6 32.0 86.3
NP NZM No 11 20.2 489 26.5 78.3

settings, for three log-linear models (O="intercept model’, I="independence model’,
II="all two-way interactions model’), and four different assumptions on mixed ef-
fects ( P="normal mixed effects’, NP Emp NZM = ’Empirical Bayes estimates of
fixed effects and Dirichlet process with non zero mean random effects’, NP NZM =
"Dirichlet process with non zero mean random effects’, NP ZM = ’Dirichlet process
with zero mean random effects’). In the second column of Table 1 we denote by
"Yes’ the presence of an intercept in the linear combination defining the A, and by
"No’ its absence.

Table 1 shows a good performance of the all two-way interactions model among
parametric models (P) which is in line with what reported in the literature (see [15]
and [14]) . Although a proper comparison of the results reported in Table 1 would
require an assessment of the posterior variability, new and interesting findings are:
1) the performance of nonparametric log-linear independence models, say (NP+I),
is comparable to that of the parametric log-linear all two-way interactions model,
say (P+II). This means that the Dirichlet process prior is able to capture the essential
features of heterogeneity without increasing the dimensionality of the problem.

2) the potential of the Dirichlet process prior for capturing latent infomation not
modeled by covariates can be appreciated by comparing the parametric log-linear
model that only contains the overall mean, say (P+O) and the nonparametric models
NP ZM and (NP NZM+O). The latter is the model used in Dorazio et al. (2008) [2];
it is more flexible than NP ZM, since the intercept term By migrates to the role of
unknown mean of the base measure of the Dirichlet process.

3) For log-linear models I and II, the comparison between nonparametric empirical
Bayes estimates of 7; and the estimates obtained from equation (3) is equivalent to
the comparison between nonparametric empirical Bayes estimates of 7; and fully
Bayesian parametric estimates reported in the second and third rows of Table 1,
since the latter estimates are obtained from vague priors.

It is worth noting that, in nonparametric models (NP), as the complexity of the log-
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linear model increases, a posteriori the average number of clusters decreases (results
not reported). Those considerations suggest that it is worth studying whether the
proposed nonparametric log-linear independence models (NP+I) allows to obtain
accurate risk estimation in very sparse tables with huge numbers of cells compared
to an all two-way interaction model (P+II). Since the number of unknown param-
eters involved in (NP+I) and (P+II) models is significantly different, and the num-
ber of corresponding zero marginal counts is also very different, a more detailed
analysis of the results obtained under the models (NP+I) and (P+II) seems to be a
promising avenue of future research.
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