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Abstract A methodology is presented for clustering financial time series in extreme
scenario. The procedure is based on the calculation of some suitable pairwise condi-
tional Spearman’s correlation coefficients. It does not assume any parametric model
describing the time series under investigation, but only relies on the assumption that
they follows a multivariate copula-GARCH model.
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1 Introduction

In portfolio risk analysis a current practice for minimizing the whole risk consists
of adopting some diversification techniques that are based, roughly speaking, on
the selection of different assets from markets and/or regions that one believes to
be weakly (or negatively) correlated. Such an approach tries to reduce the impact
of joint losses that might occur simultaneously in different markets.. To this end,
suitable cluster techniques for multivariate time series have been proposed in the
literature in order to give a guideline to practitioners for the selection of a suitable
portfolio. Such techniques span from the use of correlation coefficient (see, for in-
stance, [1]) to the use of techniques based on the comparisons among the coefficients
of the underlying processes (see, for instance, [5, 11, 12]).

However, it has been stressed several times that diversification principle may fail
when there is some contagion among the markets under consideration (see [2, 4, 7]),
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namely when the positive association among the markets increases in crisis period
with respect to tranquil periods. To this end, it could be useful to introduce some
clustering methods that focus their attention to the behaviour of financial markets in
presence of risky scenarios. An innovative work in this direction has been recently
done by De Luca and Zuccolotto [3], who proposed a clustering procedure that aims
at grouping time series with an association between extremely low values, measured
by a tail dependence coefficient.

Starting with the ideas of [3], this note aims at presenting some new clustering
procedures for extreme scenario. Such a methodology is grounded on the condi-
tional (Spearman’s) correlation coefficient between time series. It aims at creat-
ing cluster of time series that are homogeneous, in the sense that they tend to be
comonotone in their extreme low values (where the degree of extremeness is speci-
fied by a given threshold α).

2 The methodology

Let (xi
t)t be a vector of financial time series (i = 1,2, . . . ,d) representing the returns

of different assets and/or stock indices. In order to provide some cluster procedure
we are interested in determining a suitable distance or dissimilarity measure among
them.

To this end, we make use of the Spearman’s correlation coefficient ρS. Compared
with standard linear correlation, we recall that ρS is invariant under rank transforma-
tion of the marginals, and, hence, it is more adapt to describe non-linear behaviour
of time series (see, for instance, [6]).

Moreover, since we are interested in the tail of the time series, we will restrict to
consider ρS conditional on extreme observations, i.e. we calculate ρS conditional on
the fact that the time series are below a given threshold α defined in a suitable way.

As said, e.g., in [7], the calculation of ρS for conditional events can be biased by
the volatility effects of the individual time series, regardless any other influence of
the dependence among them.

To remove such an effect, we need to some additional assumptions about the
stochastic model from which the time series are generated.

Starting with a copula approach [9], we suppose that the joint model of (x1
t , . . . ,x

d
t )t

may be determined in the following way: the marginal times series are supposed to
be derived from an AR(1)–GARCH(1,1) model with innovation distribution being
symmetric Student distribution; while the residuals (x1

t , . . . ,x
d
t )t are independent and

identically distributed with dependence structure given by an unknown (but fixed)
copula C.

Basically, such a procedure applies a filter to the individual time series in order
to remove heteroscedastic effects (see, for instance, [10]).

Now, the analysis of the extremal correlation among the time series relies on the
calculation of the pairwise Spearman’s correlation among residuals in a suitable tail
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region of the copula C (or better, of its empirical version). In particular, since ρS is
scale-invariant, we may adopt the following procedure:

• Rescale the residuals from each time series to the interval [0,1] (by using, for in-
stance, their empirical cumulative distribution function) by obtaining (z1

t , . . . ,z
d
t )t .

• Fix a given level α (usually, α = 0.05,0.10,0.25), which is a threshold denoting
the “degree” of risk of the scenario we are considering.

• For every i 6= j calculate the conditional ρS of (zi
t , ,z

j
t )t given the fact that zi

t ≤ α

and z j
t ≤ α . Let us call this value ρ

i j
S (α).

Now, for i, j = 1, . . . ,d, we may define the matrix
(√

2(1−ρ
i j
S (α)

)
i, j

, which

forms a distance matrix according to [1].
The matrix above defined induces clusters amongst the d time series of financial

returns by means of a suitable procedure. For our purposes, we consider the hierar-
chical agglomerative clustering technique frequently used in practice. The idea is to
cluster time series in homogeneous groups according to the distance matrix adopted,
in the sense that the elements within the resulting clusters are expected to show a
similar behaviour in extreme scenario.

As known, hierarchical agglomerative algorithms start from the finest partition
possible (each observation forms a cluster) and each level merges a selected pair
of clusters into a new cluster according to the definition of the distance between
two groups. This sequence of nested partitions is best visualized as a top-down
tree called a dendrogram, such that the dissimilarity between merged clusters is
monotone increasing with the level of the merger.

Among all the agglomerative strategies we consider the four most common clus-
tering procedures which differ in the computation of the distance between two
groups: single linkage, complete linkage, average linkage and Ward’s method (see,
for instance,[8]). In particular, the single linkage algorithm defines the distance be-
tween two groups as the smallest value of the individual distances; the complete
linkage algorithm merges together groups by considering the largest (individual)
distances; the average linkage (weighted or unweighted) represents a compromise
between the two preceding algorithms, since it computes an average distance. The
Ward clustering method differs from the first three in the unification procedure: it
aims to unify groups such that the variation inside these groups does not increase
too drastically. The resulting groups are as homogeneous as possible. Among all the
algorithms described, the Ward method is expected to give the best results.

In the talk, we will present a small simulation study about the behaviour of the
model when the dependence among the time series is described via some known
asymmetric copula models. Moreover, the described procedure will be applied to
European stock markets by showing its practical economic consequences.
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3 Conclusions

We have presented a methodology that can be applied in order to obtain clusters of
financial time series that take into account the dependence in risky scenario. The
procedure is non-parametric, but it assume the existence of a suitable GARCH–
copula model that could describe the joint behaviour of the time series. According
to [3], we expect that the procedure could be applied in portfolio analysis, with
particular emphasis on portfolio selection.
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