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Abstract Parsimonious Hidden Markov of Factor Analyzers models are developed
by using a modified factor analysis covariance structure. This framework can be seen
as a extension of the Parsimonious Gaussian mixture models (PGMMs) accounting
for heterogeneity in a longitudinal setting. In particular, a class of 12 models are in-
troduced and the maximum likelihood estimates for the parameters in these models
are found using an AECM algorithm. The class of models includes parsimonious
models that have not previously been developed. The performance of these models
is discussed on a benchmark gene expression data. The results are encouraging and
would deserve further discussion.
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1 Introduction

In a longitudinal setting, repeated measurements are collected on the same (inde-
pendent) units over several periods of time. Standard methods for longitudinal data
analysis focus on the dependence of the variables on covariates, serial dependence,
and heterogeneity in the individuals/units (see, e.g., [9]). A growing interest has
been recently devoted to appropriately account for heterogeneity across the individ-
ual sequences (see e.g. [16]). To capture heterogeneity in a longitudinal setting, it
is common to assume the existence of a latent process, driving and characterizing
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different data generation mechanisms ([6, 10, 12] provide interesting reviews on this
topic in different contexts).

Recently, [16] introduce a model-based clustering technique for clustering longi-
tudinal in a finite mixture framework. Each longitudinal sequence can be considered
as a single object or entity belonging to one of the mixture components and all the
individual sequences within the same component are characterized by the same gen-
erating mechanism. Other approaches have been developed by using hierarchical
models ([4, 5, 11, 1, 13]) at the cost of an increasing computational burden.

In the following we are going to consider a multivariate Gaussian hidden Markov

model (HMM,; see [23] for a general introduction on HMMs), which can be seen as
an extension of the finite mixture model [14] where individuals are allowed to move
between the (hidden) components during the period of observation. Starting from
the Parsimonious Gaussian mixture models (PGMMs) introduced by [15] and fur-
ther extended by [17], we introduce a hidden Markov of factor analyzers by spec-
ifying a modified factor analysis covariance structure, including the possibility of
imposing constraints which leads to a family of 12 models, including parsimonious
models.
Parameter estimates can be obtained by an Alternating Expectation Conditional
Maximization algorithm (AECM, [18]) in a HMM framework by adapting the well-
know forward-backward algorithm ([3, 21]). The hidden Makov framework of factor
analyzers is illustrated in the clustering of a representative dataset in the microarray
literature: the yeast galactose data of [8]. The paper is organized as follows. Section
2 introduces the model by specifying some preliminaries on HMMs and providing
extensions of the basic HMM in a multivariate clustering setting. Computational
details are briefly described in Section 3, while Section 4 provides an illustrative
example of the proposed models.

2 Model-based clustering of longitudinal data

In this section we firstly introduce the basic notation and the main assumptions on
HMMs. Afterwards, we introduce in detail the hidden Markov of factor analyzers,
pointing out the considered covariance structures and the computational aspects re-
lated to the estimate of model parameters.

2.1 Hidden Markov models

In a basic HMM for longitudinal data, the existence of two processes is assumed:
an unobservable finite-state first-order Markov chain, S;;, i =1,...,n,t=0,...,T
with state space . = {1,...,m} and an observed process, Y;; = {¥i1,Yi2,-..,Yus},
where Yj;; denotes the j-th response variable for individual i at time ¢ (similarly for
Sit).
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We assume that the distribution of Y;; depends only on Sj;, specifically the Yj,
t=1,...,T, are conditionally independent given the S;:

fYi=yi | Yio=yio,- -, Yi—1 = Yir—1,5i0 = Si0, - -, Sir = Sig) =
fYi =y | Sit = sir) (1)

Typically it is assumed that the state-dependent distributions, i.e. the distributions
of Y;, given Sj;, come from a parametric family of continuous or discrete distribu-
tions. Thus, the unknown parameters in a HMM involve both the parameters of the
Markov chain and those of the state-dependent distributions of the random variables
Y;. In particular, the parameters of the Markov chain are the elements of the transi-
tion probability matrices Q = {q;;x }, where g =Pr(Sy =k | Sy—1 =1),l,k€ S is
the probability that individual i visits state k at time ¢ given that at time r — 1 he/she
was in state /, and the initial probabilities 6 = {8}, where 8; = Pr(S;p =), i.e.
the probability of being in state [ at time 0. The simplest model in this framework
is the homogeneous HMM, which assumes common transition and initial probabil-
ities, i.e. ik = qix and 6; = &;. We will focus on homogeneous HMMs to simplify
the discussion, but of course the hidden Markov chain can be assumed to be non-
homogeneous: the transition probabilities may be individual and/or time varying
and modeled via a logit function of explanatory variables.

2.2 Hidden Markov of Factor Analyzers

Consider an HMM with Y;; being multidimensional with the conditional distribu-
tion of Y;; given S; = s;; being N (,usl,t,Zs,.,), i.e. multivariate Gaussian with state-
dependent mean, [, , and covariance matrix Xy, . In line with the more general
mixture of factor analyzers framework, we assume that conditionally to the s;-th
state, the random vector y;, is modelled using a H-dimensional vector of latent fac-
tors w;s, (typically H < J) asy; = U, +As, Wi, +€ir, Where Ay, is aJ x H matrix
of factor weights, the latent variables w;;, ~ MVN(0,Iy), and e; ~ MVN(0,%¥,),
where ¥, is a J x J diagonal matrix. Thus, conditionally on the s;-th state, the den-
sity of y;, is MVN(0,A SirA;it + ¥, ). Therefore, the marginal density of a hidden
Markov of factor analyzers is given by:

f(y ) o Z S IT_Iq IZ[ exp [_%(Yit - :us,-,)/(ASizAfv,-, + L‘USir)il (yil - ‘u'ﬂ'it)]fz)
i) = i it—15it \
7T " =1 e t=0 (2”)1/2 | AsitA;it + 'PSit |1/2

where )’ 7 denotes summation over all realizations s;¢,t =0,..., T, for individ-
ual i.
Note that the proposed model can be seen as an extension of the mixture of fac-
tor analyzers model by allowing time dependence and, following the idea in [17],
constraints across groups on the Ay, and ¥y, matrices and on whether or not
Yy, =V, Zy,, where yy, € R and =, =diag{&,...,&;} such that | =, | = 1. The
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full range of possible constraints provides a class of 12 different Hidden Markov of
Factor Analyzers models, which are given in Table 1. Note that CCCC and CCCU
assume the equal isotropic noise whereas UCCC and CUUU assume the unequal
isotropic noise. The other eight covariance structures incorporating constraints on
the loading matrices dramatically reduces the number of covariance parameters and
lead to parsimonious models.

Table 1 Covariance structure in a hidden Markov of factor analyzers framework

Model ID Ay, = A g, =2 W, =¥ Z, =1

it

CCCC  Constrained Constrained Constrained Constrained X =AA+yl;
CCCU  Constrained Constrained Constrained Unconstrained X =AA+yE
CCUC  Constrained Constrained Unconstrained Constrained X = AA'+ v, Iy
CUUU  Constrained Unconstrained Unconstrained Unconstrained X, = AA 4 W, Es,
UCCC Unconstrained Constrained Constrained Constrained X, =A Sl.,A;it + vyl
UCCU  Unconstrained Constrained ~ Constrained Unconstrained Zy, = Ay, A + WE
UCUC Unconstrained Constrained Unconstrained Constrained X, =A SizA./v;, + i, Iy
UUUU  Unconstrained Unconstrained Unconstrained Unconstrained Xy, = A me + Vs, B
CCUU  Constrained Constrained Unconstrained Unconstrained X, = AA’ + Y, =
UCUU  Unconstrained Constrained Unconstrained Unconstrained Xy, = Ay, A§ + ¥, &
CUCU  Constrained Unconstrained Constrained Unconstrained X, = AA +yE s

UUCU Unconstrained Unconstrained Constrained Unconstrained X, = As,.rA;” +yEs,

3 Computational details

Even if this form of the likelihood has several appealing properties, as it stands ex-
pression (2) is of little or no computational use, because it involves a sum over m”
terms for each unit i and cannot be directly evaluated. It quickly becomes infeasi-
ble to compute even for small values of m as T grows to moderate size. Clearly, a
more efficient procedure is needed to perform the calculation of the likelihood func-
tion. This issue may be addressed via the so-called forward variables ([3, 21]). To
estimate model parameters, an Alternating Expectation Conditional Maximization
(AECM) algorithm introduced by [18] is used. This algorithm is an extension of
the EM algorithm using different definitions of missing data at different stages. The
AECM algorithm tends to be preferred to its alternatives due to its robustness and
ease of application in various scenarios, especially when the model parameters are
constrained. For homogeneous HMMs, the AECM reduces to an iterative procedure
with simple, closed form expressions for parameter estimates at each iteration. It is
based on complete-data log-likelihood, i.e., the log-likelihood of the observations
(the incomplete data) plus the states (the missing data). Before deriving the com-
plete data log-likelihood, we define u;; = I(S; = I) as an indicator variable equal to
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1 if unit { is in state [ at time ¢ and O otherwise, and v;;, = I(S;; = k,S;;—1 =) as an
indicator variable equal to 1 if unit i is in to state / at time # — 1 and in state k at time
t, 0 otherwise. Moreover, we partition the vector of unknown parameters @ in (P,
, @, ); @ contains the transition probabilities ¢;; and d; and M, - The @5 contains
the elements of Ay, , ¥y, and w;g, . At the first stage of the algorithm, we define the
state labels as missing data, and the complete data log-likelihood function has the
following form:

n T m m
Ecl (9 = Z { Z uio;log 61 + Z Z Vitk 108 g
bl t=11=1k=1
T m
£ Y Y wialog (v | Su = 1) ©
1=01=1
where
exp [~ (v — 1)/ (AIA ) (3, — 1)
(yy ‘ S” )

(27[)]/2 IAIA;-‘,-IPI |1/2

Thus, the first E-step consists of calculating the conditional expectation of expres-
sion (3) by replacing all the quantities u;,; and v, with their conditional expecta-
tions #;;; and Vi, given the current values of the parameters and the observed data.
On the other hand, at the first CM-step, the expected complete-data log-likelihood
is maximized with respect to f;, & and gy obtaining:

T ~ A T &
.al o Z,r‘l:1 Z,:() UitlYir Sl o Z?:l uior .~ Z?:l thl Vitlk
- 9 - )

T A qlk - T N .
):;1:1 Yi—oliu n ?:1 Yo 22;1 Vitik

At the second stage of the AECM algorithm, we use fl, 3; and gy obtained
above, when estimating A; and ¥; and consider the state labels and the factors to be
the missing data. Therefore, the complete data log-likelihood is

n m T m m
le,(8) =Y {Z uiorlog &+ Y Y Y vinklogqu

i=1 {[=1 t=11=1k=1

+ Z Zulll 10gf Yir | Slt =1 wtl + Z ZIOgutflf wll)} (4)

t=01= t=01=

In a similar manner as before, the estimates of A; and ¥; can be easily derived
under the different imposed constraints (not shown her for sake of brevity). The
AECM algorithm iteratively updates the parameters until convergence to maximum
likelihood estimates of the parameters. As a by-product of the estimation procedure
we have the possibility of classifying genes on the basis of their posterior probability
estimates ;. In fact, the i-th gene can be classified to the 1-th group (component of
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the estimated mixture) if 4;;; = max (di1,4i2, - - - , Bigm ) - It is worth noticing that each
group is characterized by homogeneous values of the estimated parameters.

4 The yeast galactose data

To discuss the empirical performance of the proposed model, we use a typical gene
expression dataset where the expression levels are measured at many time points or
under different conditions to elucidate genetic networks or some important biologi-
cal process. Specifically, this dataset has been used to study integrated genomic and
proteomic analyses of a systemically perturbed metabolic network ([8]). The exper-
iments included single gene deletion involving nine of the key genes (GAL1, GAL2
GAL3 GAL4, GAL5(PGM2), GAL6(LAP3), GAL7 , GAL10, GALSO0) that partic-
ipate in yeast galactose metabolism. For each experiment, one of the nine genes
was deleted, or alternatively, the experiment used a wild-type cell wherein no genes
were deleted. For each of those 10 experimental conditions, galactose was avail-
able extracellularly in one set of experiments and absent in another set. Thus, there
were a total of 7 = 20 different experimental conditions. Since each of those 20
experiments refers J = 4 experimental conditions, the overall dataset contains 80
experiments. As in ([22]) and ([19]), we imputed all the missing values using a k-
nearest neighbor method. The resulting n = 205 gene expression levels reflect four
functional categories in the Gene Ontology (GO) listings ([2]). Thus, we applied
a hidden Markov of factor analyzers to group genes into m=4 states; we do not
discuss fitting for varying numbers of states m, since we would analyze the perfor-
mance of our proposal in reproducing the known functional categories. Genes are
allowed to move among the states during the period of observation. In fact, a gene
can be associated with multiple biological functions, due to the fact that genes of-
ten have several distinct roles in regulation processes. Therefore the assumption of
assigning a gene only to one state (or cluster) is an oversimplification for a biologi-
cal system. In the following we summarize the potential of the proposed approach.
We look at three over twelve factorial parameterizations as illustrative examples.
The evolution over time is presented in Figure 1, while a comparison in terms of
BIC = 2 x { +#parameters x log(n) and goodness-of-classification with PGMMs
is provided in Table 2. We classify each gene in the state maximizing its posterior
membership probability deriving the unobserved sequence of states. Figure 1 shows
the hidden sequences of hidden states; it is clear that time dependence and hetero-
geneity play an important role in the classification, since genes seem to change their
behavior, moving across states over time.

Furthermore, we provide a measure of the quality of the classification by the
index

i ZtT’;l (max (di1, iz, -, Biem) — =)

S= 1 n
(=X T
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Index S is always between 0 and 1, with 1 corresponding to the situation of ab-
sence of uncertainty in the classification, since one of such posterior probabilities is
equal to 1 for every individual at every time, with all the other probabilities equal
to 0. It helps in identifying if the population clusters are sufficiently well separated.
It is worth noting that each state is characterized by homogeneous values of esti-
mated random effects; thus, conditionally on observed covariates values, subjects
from that state have a similar propensity to the event of interest. The UCCU HMM
is the preferred model, providing the best goodness-of- classification and the best
BIC. This confirms the importance of appropriately account for all longitudinal data
characteristics.

Table 2 Summary results

Model (H PGMM
BIC S

HMM
BIC S

uuuu

w N

14821.53 0.758
14759.23 0.756

16867.12 0.931
16840.02 0.932

UCCU

W N

14659.44 0.795
14859.23 0.758

16820.41 0.934
16903.45 0.932

ucuc

W N

7611.761 0.735

12162.73 0.864

10413.41 0.970
14131.45 0.919

Fig. 1 Hidden states sequences for the 205 genes over 20 times
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