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Abstract Different degrees of similarity can be devised among thek covariance ma-
tricesΣh, referred tok groups, using their spectral decomposition. In this paper we
introduce a closed testing procedure allowing for a choice between eight patterns of
covariances. The new methodology allows to disclose a richer information on the
data underlying structure than the classical existing methods, and also a more parsi-
monious parameterization. An application on a real data setexemplify the proposal
and shows its performances.
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1 Introduction and motivation

This paper extends the study of similarity betweenk covariance matricesΣ h, re-
ferred to k groups, under the assumption of multivariate normality. Consider p
variables measured onn statistical units arising fromk ≥ 2 different groups. Let

x(h)1 , . . . ,x(h)nh denotenh independent observations, for thehth group, drawn from a
normal distribution with mean vectorµh and covariance matrixΣh, h = 1, . . . ,k.
Naturally,∑k

h=1nh = n.
Suppose to be interested in making inference aboutΣ 1, . . . ,Σ k, with particu-

lar emphasis on their degree of similarity. In this paper, following Celeux and
Govaert (1995), we develop an analysis of similarity between covariance matri-
ces considering the decompositionΣh = λhΓ h∆ hΓ ′

h,(h = 1, . . . ,k), where∆ h is
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the scaled (|∆ h| = 1) diagonal matrix of the eigenvalues ofΣ h sorted in decreas-
ing order,Γ h is the p × p orthogonal matrix whose columns are the normal-
ized eigenvectors ofΣh ordered according to their eigenvalues andλh = |Σh|

1/p.
Each component of the right side of (1) has a different geometric interpretation
in terms of the group scatters:Γ h governs the axesorientation, ∆ h controls the
shape, and λh denotes thevolume of the ellipsoids of equal concentration. By
allowing some but not all of these quantities to vary betweengroups, we ob-
tain parsimonious and easily interpretable models which are appropriate to de-
scribe various practical situations. The resulting modelsgive raise to the family
M̃ = {EEE,VEE,EVE,EEV,VVE,VEV,EVV,VVV }, where the three letters are
respectively referred to volume, shape and orientation, and each of them can be
equal (E) or variable (V) among groups.

In order to select the covariance structure iñM , we define a closed multi-
ple testing procedure characterized by local likelihood-ratio (LR) tests. LetM =

M̃ \ {VVV } be the closure, under intersection, ofM =
{

VVE,VEV,EVV
}

. For
eachM ∈ M , let us denote byHM

0 the corresponding null hypothesis. Thus, for
example,HEEV

0 is the null hypothesis referred to EEV. We set model VVV as the

benchmark (diagnostic), because it is the most general (less constrained) inM̃ ,
requiringkp(p+1)/2 parameters. This position allow us to define seven tests, the
mostomnibus as possible, which lay in a hierarchy. Rejection ofHM

0 for all M ∈M ,
implicitly leads to the “not rejection” ofHVVV

1 .
Then, a primary concern for an MTP is the choice of a suitableerror rate to

control. We choose thefamilywise error rate (FWER); it is defined as the probability
of committing at least one Type I error, and it is mostly employed when the number
of elementary hypotheses is moderate, as in our case. We willemployadjusted p-
values which are the natural counterpart, in the multiple testing framework, of the
classicalp-values (see, e.g., Bretz,et al., 2009). We construct the MTP as aclosed
testing procedure (CTP) (Marcuset al., 1976) because the latter are among the most
powerful MTPs that strongly control the FWER at levelα. Further, they are a natural
choice for our context, because they address a family of hypotheses that is closed
under intersection.

Now, to assess the hypothesisHM
0 for M ∈ M , we employ the likelihood-ratio

(LR) statistic

LRM =−2ln
LM

LVVV
(1)

that, underHM
0 , by the general theory of LR-tests is asymptotically distributed

(when minh=1,...,k nh → ∞) as aχ2 with νM degrees of freedom given by the dif-
ference in the number of (free) parametersηVVV andηM between VVV andM.

2 Testing for covariance similarity in the Crabs data

The crab data set of Campbellet al. (1974) on the genusLeptograpsus, consists in
a sample ofn = 100 blue crabs, there beingn1 = 50 males (group 1) andn2 = 50
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females (group 2), each specimen havingp = 2 measurements (in millimeters) on
the rear width (RW) and the length along the midline (CL) of the carapace. By
Mardia’s test, the two group-conditional distributions can be considered bivariate
normal, while the LR-test of homoscedasticity rejects the null hypothesis at any
reasonable significance level, giving ap-valuepEEE= 6.66·10−15.

Details on the decomposition (1) are shown in Table 1, while Fig. 1 displays the
scatterplot of RW versus CL, in both groups.

Table 1 Decomposition ofΣVVV
h , h = 1,2, according to equation (1), for the two groups in the

crabs data.

Group Volume Shape Orientation

males
(n1 = 50)

λ VVV
1 = 3.22274 ∆VVV

1 =

[
17.54242 0

0 0.05700

]
Γ VVV

1 =

[
0.27256−0.96214
0.96214 0.27256

]

females
(n2 = 50)

λ VVV
2 = 2.24620 ∆VVV

2 =

[
17.82737 0

0 0.05609

]
Γ VVV

2 =

[
0.37796−0.92582
0.92582 0.37796

]
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Fig. 1 Scatterplot of variables RW and CL forn1 = 50 males andn2 = 50 females blue crabs (◦
denotes male and× female). Ellipses of equal (95%) concentration are also superimposed.

Although the LR-test for model VVV points out heteroscedasticity (with a prac-
tically null pEEE= 6.66·10−15), the scatterplot in Fig. 1 shows strong similarity be-
tween volume and shape of the two ellipses; accordingly, in Table 1, sample shape
matrices appear to be similar as well as (to a lower extent) sample volumes. The
orientation of the two ellipses in Fig. 1 shows a slight difference in the directions of
their main axes, attested also in the values along the diagonal of the sample orienta-
tion matricesΓ VVV

1 andΓ VVV
2 in Table 1.

Results in Fig. 2 and Table 2 (see firstly the left six columns)corroborate the
aforementioned considerations; in particular, at the 0.05-level, the EEV-model is
not rejected since its components (EVV and VEV) are not rejected too. Also, in the
comparison betweenqVEV with qEVV, it is interesting to note the incidence of the
former which underlines a stronger degree of similarity between groups in terms of
shape. On the contrary, some of the considered likelihood-based ICa (AIC, and also
AIC3, and AICc) lean towards the more complex VEV-model with a loss of one
parameter with respect to model EEV.

This paper underlines how some relevant configurations of similarity between
covariance matricesΣh, referred to different normal groups, can be described by
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0
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0
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Fig. 2 Unadjusted and adjustedp-values (in round brackets) related to the closed LR-testing pro-
cedure applied to the crabs data. Rejected hypotheses, are displayed in gray.

Table 2 Details on the closed LR-testing procedure, and some likelihood-based ICa applied to the
crabs data. Bold numbers refer to the “not rejected” model(s) in M at the 0.05-level (column of
the adjusted valuesqM), and to the best model for each likelihood-based information criterion.

M ηM LRM νM pM qM −2lnLM AIC BIC CAIC

EEE 3 69.0889 3 6.66·10−15 834.6112 840.6112 848.4267 851.4267
VEE 4 67.4247 2 2.33·10−15 832.9469 840.9470 851.3676 855.3676
EVE 4 67.8934 2 1.78·10−15 833.4156 841.4156 851.8363 855.8363
EEV 4 3.2466 2 0.19724 768.7689 776.7689787.1896 791.1896
VVE 5 67.2897 1 ≈ 0 6.66·10−15 832.8119 842.8119 855.8378 860.8378
VEV 5 0.0065 1 0.93579 0.93579 765.5287 775.5287 788.5546 793.5546
EVV 5 3.2403 1 0.07185 0.19724 768.7626 778.7626 791.7884 796.7884
VVV 6 765.5222 777.5223 793.1533 799.1533

considering the three-terms eigenvalue decompositionΣ h = λhΓ h∆ hΓ ′
h. Each of

these terms denotes specific geometric characteristics (volume, shape and orienta-
tion). This approach leads to eight different models by allowing each of the three
terms to be common or not between groups. However, no statistical test to individu-
ate the “correct” model among them exists and, still today, the omnibus Box’sM-test
of homoscedasticity (versus heteroscedasticity) is widely used; unfortunately, being
omnibus, after a rejection of the null hypothesis, it leavesthe practitioner without
any more information. In this paper such a gap has been covered by providing a
closed testing procedure, using local likelihood-ratio tests, to assess the choice.
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