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Abstract Multiple frame surveys are increasingly used by large statistical agencies
and private organizations to reduce frame undercoverage errors and also sampling
costs. Estimation for multiple frame surveys has been considered ever since the
work of Hartley (1962). In this work we extend the tools of calibration estimation
developed so far for single frame surveys to the case of dual frame surveys. Cali-
bration allows to handle different types of auxiliary information and can be shown
to encompass as a special case the pseudo empirical maximum likelihood approach
recently proposed by Rao and Wu (2010).
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1 Introduction

To improve estimates, survey statisticians make use of the available auxiliary infor-
mation either at the design or at the estimation stage. One important example of the
latter is given by calibration estimation (Deville and Särndal, 1992), that seeks for
new weights that are as close as possible (in terms of a given distance) to the basic
design weights and that, at the same time, match benchmark constraints on avail-
able auxiliary information (e.g. population totals or means of auxiliary variables).
Recently, multiple frame surveys have gained much attention and became largely
used by statistical agencies and private organizations to decrease sampling costs
– e.g. by using different modes of interviewing in different frames – or to reduce
frame undercoverage errors that could occur with the use of only a single sampling
frame. Much attention has been devoted in the literature to the introduction of dif-
ferent ways of combining estimates coming from the different frames (see Lohr,
2009, for a recent review). In this work we will extend the calibration paradigm to
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the estimation of the total of a variable of interest in dual frame surveys as a general
tool to include auxiliary information, also available at different levels.

2 Calibration estimation for dual-frame surveys

Let A and B denote two sampling-frames, both can be incomplete, but it is assumed
that together cover the entire finite population U = {1, . . . ,k, . . . ,N}. Let A be
the set of population units in frame A and B the set of population units in frame
B. The population of interest, U , may be divided into three mutually exclusive
domains, a = A ∩Bc,b = A c ∩B and ab = A ∩B. It is convenient to create a
duplicate domain ba = B∩A , which is identical to ab = A ∩B (see Rao and Wu,
2010). Let N, NA, NB, Na, Nb, Nab, Nba be the number of population units in U ,
A, B, a, b, ab, ba, respectively. It follows that NA = Na + Nab, NB = Nb + Nab and
N = Na +Nb +Nab = Na +Nb +Nba. Let δk(a) = 1 if k ∈ a and 0 otherwise, so that
∑

N
k=1 δk(a) = Na. Let δk(b), δk(ab) and δk(ba) be defined similarly.
The objective is to estimate the finite population total Y = ∑

N
k=1 yk of a variable

of interest y. Note that

Y = Ya +ηYab +(1−η)Yba +Yb, (1)

where Ya = ∑
N
k=1 δk(a)yk, Yab, Yba and Yb are defined similarly, and 0≤η ≤ 1. To this

end, two probability samples sA and sB are drawn independently from frame A and
frame B of sizes nA and nB, respectively. Each design induces first-order inclusion
probabilities πA

k and πB
k , respectively, and sampling weights dA

k = 1/πA
k and dB

k =
1/πB

k . The sample sA can be post-stratified as sA = sa ∪ sab, where sa = sA ∩ a and
sab = sA∩ab. Similarly, sB = sb∪sba, where sb = sB∩b and sba = sB∩(ba). Note that
sab and sba are both from the same domain ab, but sab is part of the frame A sample
and sba is part of the frame B sample. In this way, we have a sort of “poststratified”
sample s = sa∪sab∪sba∪sb with “poststratum” sample sizes (na,nab,nba,nb). Note
that nA = na +nab and nB = nb +nba.

If no auxiliary information is available at the estimation stage, each component
of (1) can be estimated by its Horvitz-Thompson estimator (Ŷa = ∑k∈sA

dA
k δk(a)yk,

and similarly for the other components, see e.g. Hartley, 1962). The value of η can
be chosen to minimize the variance of Ŷ . Such a value depends on the variable y
except in the case of simple random sampling from both frames (see Lohr, 2009, for
a review of alternative methods).

Now, let xk be the value taken on unit k by a vector of auxiliary variables of
which we assume to know the population total tx = ∑

N
k=1 xk. Using the calibration

paradigm (Deville and Särndal, 1992), we wish to modify the aforementioned basic
Horvitz-Thompson estimator to obtain a more accurate estimation of the total Y .
In particular, let the basic design weights in each post-stratum be dak = dA

k δk(a),
dabk = dA

k δk(ab), dbak = dB
k δk(ba) and dbk = dB

k δk(b). Then, we wish to find new
weights (wak ,wabk ,wbak ,wbk) that are as close as possible to the basic weights, in
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terms of the following distance

∑
k∈sa

G(wak ,dak)+η ∑
k∈sab

G(wabk ,dabk)+(1−η) ∑
k∈sba

G(wbak ,dbak)+ ∑
k∈sb

G(wbk ,dbk)

(2)
and satisfy benchmark constraints on the known population totals. Let the distance
function in (2) satisfy the usual conditions required in calibration estimation (see
e.g. the set of distance functions provided in Deville and Särndal, 1992). We will
now consider three simple examples of the vector x.

Case 1. NA, NB and Nab are all known.
Let xk =(δk(a),δk(ab),δk(ba),δk(b)), for k = 1, . . . ,N. Then, tx =(Na,Nab,Nba,Nb)
and the four calibration constraints can be written as

∑
k∈sa

wak = Na, ∑
k∈sab

wabk = Nab, ∑
k∈sba

wbak = Nba, ∑
k∈Sb

wbk = Nb. (3)

It can be shown that regardless of the choice of the distance measure G(·, ·), the
new weights will take the Hajek form

wak = dak

Na

N̂a
, wabk = dabk

Nab

N̂ab
, wbak = dbak

Nba

N̂ba
, wbk = dbk

Nb

N̂b
. (4)

Note that if we take as the distance function in (2) the Kullback-Leibler diver-
gence, which is defined for the first term as G(wak ,dak)= ∑k∈sa dak log(dak/wak)=
∑k∈sa dak log(dak)−∑k∈sa dak log(wak), i.e. the case 4 distance in Deville and
Särndal (1992), we can simply verify that minimizing this distance is equiva-
lent to maximizing the second member on the right, that is equivalent to the
maximum PEL method proposed by Rao and Wu (2010).

Case 2. NA, NB are known and Nab is unknown.
We can consider this as a case of incomplete post-stratification (see e.g. Deville
et al., 1993), of which raking ratio is a particular case. In this case xk = (δk(a)+
δk(ab),δk(ba) + δk(b)), for k = 1, . . . ,N. Then, tx = (NA,NB) and the two cal-
ibration constraints are given by ∑k∈sa wak + ∑k∈sab

wabk = NA, ∑k∈sba
wbak +

∑k∈Sb
wbk = NB. If we consider the Euclidean distance in (2), given for the first

term by G(wak ,dak) = ∑k∈sa(wak −dak)
2/2dak , then the calibrated weights are

wak = dak NA/(N̂a + N̂ab) and wabk = dabk NA/(N̂a + N̂ab) (5)

and similarly for wbak and wbk . Since ∑k∈sa wak = N̂w
A = N̂aNA/(N̂a + N̂ab), then

we have wak = dak N̂w
a /N̂a, that is similar to wak in (4) except that Na is estimated.

Case 3. NA, NB, Nab and the population total in frame A of a variable x are known.
Let xk =(δk(a),δk(ab),δk(ba),δk(b),δk(a)xk +δk(ab)xk), for k = 1, . . . ,N. Then,
tx = (Na,Nab,Nba,Nb,XA), where XA is the population total of x in frame A, and
the calibration constraints can be written as

∑
k∈sa

wak = Na, ∑
k∈sab

wabk = Nab, ∑
k∈sba

wbak = Nba, ∑
k∈Sb

wbk = Nb,
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∑
k∈sa

wak xk +η ∑
k∈sab

wabk xk +(1−η) ∑
k∈sba

wbak xk = XA. (6)

If we consider the Euclidean distance, the calibrated weights for domain sa are
given by

wak = dak

[Na

N̂a
+λ

( X̂a

N̂a
− xak

)]
, (7)

where λ is a Lagrange multiplier given by λ = (XA− X̂H
A )/(Ŝ2

a,x +η Ŝ2
ab,x +(1−

η)Ŝ2
ba,x) with X̂H

A = X̂H
a +ηX̂H

ab +(1−η)X̂H
ba, Ŝ2

a,x = ∑k∈sa dak(xak− X̂a/N̂a)2 and
similarly for Ŝ2

ab,x and Ŝ2
ba,x. The calibrated weights wabk and wbak are similar to

those in (7) but with quantities referred to the appropriate domain, while weights
wbk are as in (4). When using the weights, the resulting estimator resembles a
combined regression estimator. In fact Ŷcal = Ŷ H +(XA− X̂H

A )β̂ where Ŷ H is the
estimate of (1) in which each component is estimated by its Hajek estimator,
while

β̂ =
Ŝa,xy +η Ŝab,xy +(1−η)Ŝba,xy

Ŝ2
a,x +η Ŝ2

ab,x +(1−η)Ŝ2
ba,x

,

with Ŝa,xy = ∑k∈sa dak(xak − X̂a/N̂a)(yak − Ŷa/N̂a) and also for Ŝab,xy and Ŝba,xy.

Other types of auxiliary information can of course be considered, as those, for
example, in which the auxiliary variable pertains only frame B (XB = ∑

N
k=1 δk(ba)+

δk(b)xk) or the entire finite population U (X = ∑
N
k=1 xk), or a combination of the

three. Extension of Case 3 to a vector of auxiliary variables is straightforward. Ex-
tension to multiple frame surveys, on the other hand, has to account for different
levels of frame membership information (Singh and Mecatti, 2011).
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