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1 Background and notation

Graphical models of marginal independence, introduced by Cox & Wermuth [1]
with the name of covariance graph models, are also known in the literature as bidi-
rected graph models following Richardson [6]. These models are of special interest
because they belong to the families of ancestral and summary graphs; see Wermuth
& Sadeghi [8] for a review. Let G = (V,E) be a bidirected graph defined by a fi-
nite set V = {1, . . . , p} of nodes and a symmetric set of edges E ⊆ V ×V drawn as
bidirected. Under the pairwise Markov property, for a random vector XV = (Xv)v∈V ,
a missing edge between a pair of nodes (u,v) /∈ E corresponds to the marginal inde-
pendence Xu⊥⊥Xv. The set of all independencies encoded by G can be derived using
the connected set Markov property: given any disconnected set D ⊆ V of nodes
in G , the vectors associated to its connected components XC1 , . . . ,XCr are mutually
independent; see Fig. 1 for an illustration and Richardson [6] for technical details.

In this paper we consider a vector XV of binary variables following a cross-
classified Bernoulli distribution on {0,1}p with joint probability parameter π . As
π varies over the simplex, this defines an exponential family whose mean parameter
(also called Möbius parameter) is the vector µ = (µA)A⊆V , where µA = P(XA = 1).
These probabilities are obtained as linear functions of the joint probabilities, i.e.,
µ = Zπ , where Z is a square matrix and is the inverse of the Möbius matrix M such
that π = Mµ; see Drton & Richardson [2] for technical details.

Choosing a parameterization for graphical models of marginal independence is a
crucial task mainly for two reasons: a) pairwise independencies do not imply higher
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Fig. 1 Bidirected graph
for seven variables. Given
the disconnected sets
{CL,T R,HE,MU,MC}
and {MU,T R,HE,CL,CC},
the independence model
under the connected
set Markov property is
CL⊥⊥{T R,HE,MU,MC}
and MU⊥⊥{T R,HE,CL,CC}.
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order independencies; b) it should be possible to implement additional constraints
for the selection of parsimonious submodels. More in detail, desiderable properties
of a convenient parameterization include: i) parameter interpretability, ii) upward
compatibility (invariance of parameters with respect to marginalization), iii) closed-
form representation of the joint probabilities, iv) availability of efficient procedures
for maximum likelihood estimation.

Drton & Richardson [2] defined the independencies of a binary graphical model
of marginal independence by means of multiplicative constraints on the mean pa-
rameter, i.e., letting µD = µC1 × . . .× µCr for every disconnected set D ⊆ V of the
graph. For instance, the graph in Fig. 1 implies µ{MU,CL,CC} = µ{MU}× µ{CL,CC}.
This parameterization satisfies the upward compatibility property, allows one to
write the likelihood function in closed form, and is amenable to efficient maxi-
mum likelihood estimation via the iterative conditional fitting algorithm of Drton
& Richardson [2]. However, the mean parameter does not have an immediate inter-
pretation in terms of dependence/independence and, since non-linear constraints are
used, parsimonious submodels cannot be easily specified.

Successively, Lupparelli et al. [5] considered the multivariate logistic parameter
η = (ηA)A⊆V of Glonek & McCullagh [4], defined by the link function η =C logLπ

for suitable rectangular matrices C and L, and specified a bidirected graph model by
means of the linear constraints ηD = 0, where D varies in the disconnected subsets
of V . For instance, the graph in Fig. 1 implies η{MU,CL,CC} = 0. This parameteri-
zation satisfies the upward compatibility property, its parameters are interpretable
measures of association and, since the independence model corresponds to zero
interactions, parsimonious models can be easily specified by setting further interac-
tions to zero. Nevertheless, the likelihood function cannot be written in closed form
as a function of η , because the inverse mapping η 7→ π is not analytically avail-
able, and classical constrained likelihood maximization, although straightforward,
is hampered by the large dimension of the rectangular matrices C and L.

More recently, Roverato et al. [7] studied a parameterization based on a log-linear
expansion of the parameter µ . The next section shows how this parameterization can
be used to define parsimonious bidirected graph submodels.
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2 The log-mean linear parameterization

The LML (log-mean linear) parameter γ = (γA)A⊆V is defined by the mapping

γ = M> log µ (1)

and its elements are measures of association in marginal distributions, e.g., the
first, second and third order interactions are γ{v} = log µ{v}, γ{u,v} = log

µ{u,v}
µ{u}µ{v}

,

γ{u,v,w} = log
µ{u,v,w}µ{u}µ{v}µ{w}

µ{u,v}µ{u,w}µ{v,w}
, with u,v,w ∈ V . Hence, the LML parameteriza-

tion satisfies the upward compatibility, and it allows to write the joint proba-
bilities in closed form, because the mapping γ 7→ π is analytically computed as
π = M exp(Z>γ). Although the link function defining the LML parameter is of the
form of the link function defining the multivariate logistic transform, in the latter
the contrast and marginalization matrices corresponding to M and Z are rectangular
of size t×2p with t� 2p. Therefore, classical constrained likelihood maximization
is more efficient when constraints are expressed through γ .

Roverato et al. [7] proved that, given two disjoint subsets of variables A,B ⊆ V ,
the marginal independence XA⊥⊥XB holds if and only if γa∪b = 0 for every a ⊆ A
and b ⊆ B with a,b 6= /0. Then, a binary bidirected graph model can be defined by
letting γD = 0 for every disconnected set D ⊆ V of the graph. For instance, the
graph in Fig. 1 implies γ{MU,CL,CC} = 0. Additional zero constraints on higher order
interactions can be introduced to obtain a parsimonious submodel, like with the
multivariate logistic parameter η , but a more interpretable simplification option is
also available: given three disjoint subsets of variables A,B,C⊆V , the code-specific
subpopulation independence XA⊥⊥XB|{XC = 1} can be specified by a set of linear
constraints on γ; see Cor. 8 in Roverato et al. [7].

One should observe that distinct codings (labelling of variable values as 0 and 1)
will result in distinct parsimonious submodels. When no coding has a special status,
Roverato et al. [7] suggest to adopt the maximal count coding, which labels variable
values so that the cell 1V of the table contains the largest count. This coding allows
to test code-specific independencies in conditional distributions with more observa-
tions, which results in increased inferential power. Roverato et al. [7] also consider
a medical application where a special coding is of interest.

3 An illustrative example

We illustrate how the LML parameterization can be used to select bidirected graph
submodels for a data set originally analyzed by Drton & Richardson [2]. These
authors used bidirected graph models to examine seven questions relating to trust
and social institutions, taken from the U.S. General Social Survey between 1975
and 1994. The seven binary variables collected over 13,486 individuals are: T R
(Can most people be trusted?), HE (Do you think most people are usually helpful?),
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MU and MC (Are you a member of a labour union / church?), CL and CC and
CB (Do you have confidence in law / religious congregations / business?). Using
the mean parameterization, and a backward stepwise selection procedure, Drton &
Richardson [2] found that the bidirected graph model in Fig. 1 achieves a good
fit with deviance χ2

(26) = 32.67 (p = 0.172, AIC = −19.3). The great number of
parameters suggests that a more parsimonious model could fit the data equally well,
but the mean parameterization does not help with this kind of simplification.

We analyze the same data set using the LML parameterization to specify the
model in Fig. 1 and adopting a procedure based on two steps for the selection of a
parsimonious submodel. As a first step, we search the data for code-specific inde-
pendencies. Leaving the choice of an optimal procedure for this search as a topic
for future research, we focus on a simple heuristic strategy that could be especially
useful in presence of large tables: we focus on the cliques of the graph in Fig. 1,
because they have a good potential for simplification (not having been simplified at
all in the model). For each clique Cli, i = 1,2,3, we search for code-specific subpop-
ulation independencies in the partial distribution XCli |{XV\Cli = 1}, and find that the
variables {MU,MC,CB} are mutually independent in the subpopulation defined by
{T R = 1,HE = 1,CL = 1,CC = 1}. Including this code-specific independence in
the model, we achieve a fit with deviance χ2

(30) = 38.51 (p = 0.137, AIC =−21.5).
As a second step, we further simplify the model by testing the significance (based
on Wald’s test) of the remaining higher order LML interactions. We finally obtain a
bidirected graph submodel with deviance χ2

(92) = 99.50 (p = 0.279, AIC =−84.5).
The same data set has been also analyzed by Evans & Richardson [3] using the

multivariate logistic parameterization. These authors find a parsimonious submodel
by vanishing all 4-5-6 and 7-way interactions, together with those 3-way interactions
that are not significant in their selection procedure. They obtain a bidirected graph
submodel with deviance χ2

(102) = 111.48 (p = 0.245, AIC =−92.5).
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