Bayesian nonparametric predictions for count
time series

Luisa Bisaglia and Antonio Canale

Abstract In this paper we introduce a Bayesian nonparametric methodology for
producing coherent predictions of count time series using the INAR(1) process. Our
predictions are based on estimates of the p-step ahead predictive mass functions
assuming a nonparametric prior for the distribution of the error term having large
support on the space of discrete probability mass functions. An efficient Gibbs sam-
pler is developed for posterior computation.
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1 Introduction

Recently, there has been a growing interest in studying nonnegative integer-valued
time series and, in particular, time series of counts. Examples are categorical time
series, binary processes, birth-death models and counting series.

The most common approach to build an integer-valued autoregressive processes
is using a probabilistic operation called thinning. Using binomial thinning, AI-Osh
& Alzaid (1987) and McKenzie (1988) first introduced integer-valued autoregres-
sive processes (INAR). A recent review on integer-valued AR processes can be
found in Silva et al. (2005) and Jung & Tremayne (2011). While theoretical proper-
ties of INAR models have been extensively studied in the literature, relatively few
contributions discuss the development of forecasting methods that are coherent, in
the sense of producing only integer forecasts of the count variable. Freeland & Mc-
Cabe (2004), in the context of INAR(1) process with Poisson innovations suggest
some solutions that are somewhat problem-specific. Thus, McCabe & Martin (2005)
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consider the Bayesian point of view and present a methodology for producing co-
herent forecasts of low count time series that is completely general. The predictive
probability mass function, defined only over the support of the discrete count vari-
able, is a natural outcome of Bayes theorem.The results are valid for any sample size
and not only asymptotically, moreover the innovations can be any arbitrary discrete
distribution, within a specified finite set of distributions. In particular, the authors
focus on Poisson, binomial and negative binomial distributions.

In this paper, we consider INAR(1) models with flexible specifications of the
error term under a Bayesian nonparametric approach. The assumption of a nonpara-
metric prior with large support for the innovation distribution, bypasses the need to
specify a finite set of discrete distribution as in McCabe & Martin (2005). Our ap-
proach leads to two main improvements: first we overcome the specification of the
predictive probability as a mixture of K predictive distributions, and second we do
not rely on the usual strict parametric models. Among the different proposal made
in the Bayesian nonparametric literature to model count distributions, we use that of
Canale & Dunson (2011). Some possible applications are, for example, the number
of clients in an Internet server by hour, the daily number of traded stocks in a firm,
the daily number of guests in a hotel, the monthly incidence of a disease. Further-
more, also continuous valued series in which the observations fall in one of a small
number of categories or that can be discretized, can be treated as integer-valued time
series.

2 Model specification

2.1 The INAR(1) model

To introduce the class of INAR model we first recall the thinning operator, ‘o’,
defined as follows.

Definition Let Y be a non negative integer-valued random variable, then for any
a€[0,1]

oY =

Y
Xi

i=1

where X; is a sequence of iid count random variables, independent of Y, with com-
mon mean «.

The INAR(1) process {Y;;t € Z} is defined by the recursion
Yi=aoY 1+¢& ey

where a € [0,1], and & is sequence of iid discrete random variables with finite
first and second moment. The components of the process {Y;} are the surviving
elements of the process Y;_; during the period (¢ — 1,7], and the number of elements
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which entered the system in the same interval, &. Each element of ¥;_; survives with
probability ¢ and its survival has no effect on the survival of the other elements, nor
on & which is not observed and cannot be derived from the Y process in the INAR(1)
model. In the next section we discuss a nonparametric prior for the distribution of
the error term.

2.2 Rounded mixture priors

To define a nonparametric model for counts, Canale & Dunson (2011) proposed to
round an underlying variable having an unknown density given a Dirichlet process
mixture of Gaussians prior. Such rounded mixture of Gaussians (RMG) have been
showed to be highly flexible and having excellent performance in small samples
while having appealing asymptotic properties in terms of large support and strong
posterior consistency.

Following Canale & Dunson (2011) we let the probability that the discrete error
equals j, for j € N to be

Py =snll= [ oy @)

J

with the thresholds chosen as ag = —ec and a; = j—1 for j € {1,2,...} and mod-
elling the underlying f as the mixture model

7075P) = [ 007w )aPGLz), P~ DP(RY). 3)

Here, ¢(y;u,7~") is a Gaussian density having mean y and precision 7 and
DP(nPRy) corresponding to the Dirichlet process with Py chosen to be Normal-
Gamma and 11 > 0. Equations (2)—(3) induce a prior p ~ II over &, the pace of
the probability mass functions on the non negative integers.

3 p-step ahead predictive probability mass function

Exploiting the birth-and-death process interpretation of the INAR(1) model, the dis-
tribution of ¥; given y,_1, o and p is

min{y;.y, 1}
Pr(Yl:yi|yl*|aa7p): Z PV(B;X—IZS)XP()’I_S) (4)
s=0

where p is a random probability measure obtained through (2)-(3) and B} ~
Be(k, 7).
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The likelihood function giveny = (y1,...,yr) of @ and the random discrete mea-
sure p turns out to be

7 min{y,,y,_1}

(ely)<J] Y @(—a)—p(y—s) )
=2 s=0

where 8 € ©® and ® = R x % The posterior distribution can be obtained as
(6 |y) o< £(6 | y)m(6) ©)

where 77(60) is the prior probability. Given the nonparametric prior p ~ IT it is suffi-

cient to elicit a prior for a ~ 7. In presence of prior information we can use a beta

distribution with given mean corresponding to one’s prior belief about ¢. Being

noninformative one can assume a uniform prior distribution between zero and one.

Assuming that o and p are independent a priori, the prior 7(6) is 7(0) = IT X 7.
The p-step ahead probability mass function is here defined as

Pr(Yrip=jly)= /@ Pr(Yrip=J|y,0)dn(0|y) ™

where 7(6 | y) is the posterior distribution (6).
The following Gibbs sampler computes the quantity in (7) iterating the following
steps

1. Data augmentation step given p and «.

Yr—1 A
- Fortr=2,...,T, given y,_;, simulate B, from P(B, = j) o< ( j ) o/ (1 —

)17/ x p(y, — j) for j=0,...,y,.
- Fort=2,...,T, simulate & ~ f where f is as in (2)—(3) under the constraints
ay, B, < g < Ay, —B;+1

2. Update the parameters of the RMG as in Canale & Dunson (2011)
3. Update & from its conditional posterior distribution via Metropolis-Hastings step
4. After burn in, simulate Y, as in equation (4)

The main advantage of this approach with respect McCabe & Martin (2005)
is that we does not assume any parametric model within a set of £ models. Also
there are advantages in terms of forecast accuracy which we show by mean of an
exstensive Monte Carlo experiment.
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