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Abstract The prediction of species distribution in suitable regions is essential for 
planning conservation and management strategies. Unfortunately, quite often the only 
available information is the presence of the species at few locations while the 
associated environmental covariates can be observed over the complete area of interest. 
This kind of situation can be seen as a missing data problem with asymmetric and 
partial information, we say that data are presence-only data. In this paper we present a 
Bayesian approach to handle with presence-only data, we also consider the case when a 
spatial effect acts among the observations. MCMC computation has been implemented
through a data augmentation algorithm allowing us to result consistent estimates for the 
regression parameters jointly with the unknown species prevalence.

1 Introduction

In ecology, the evaluation and the prediction of the spatial distributions of species and 
their interactions with environmental factors are of primary interest in order to better 
plan and manage strategies in habitat conservation. Binary responses, indicating the 
presence-absence process of a species, are usually related to the set of the explicative 
covariates through the use of logistic regressions. However, in many ecological 
analyses the complete collection of the binary responses could be quite expensive or 
even very difficult to be obtained, we could observe the true presence of the species 
only at few locations of the study area while the associated environmental covariates 
can be available over the whole region. In that case we define the data as presence-only 
data. In this work we present the hierarchical modeling introduced by Ward et al. 
(2009) and developed in a Bayesian framework by Divino et al. (2011). Through the 
use of a random approximation, it is possible to adapt the adjusted logistic model for 
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case-controls studies also in the setting of the presence-only data, overcoming the need 
to know the prevalence of the species a priori. Estimation of the regression parameters 
jointly with the prevalence can be carried out through a data augmentation MCMC 
algorithm.

2 Model and Computation

With respect to a population U of spatially referenced sites i, let Y=(Yi ; iU) be a 
binary process concerning the presence-absence of a species of interest, X=(Xi ; iU) a 
set of covariates and Up the subset of U where the species is present (Y=1). When only 
presences are observed, samples from the process Y can be drawn only from the 
population Up and the usual case-control approach through the logistic regression can 
not be adopted as the absences (Y=0) are not directly observed. Lancaster and Imbens 
(1996) and Ward et al. (2009) proposed to overcome this problem by considering a 
combination of two independent random samples: the first sample Sp is a sample of 
cases from the population of presences Up while the second one Su is a sample of 
“pseudo” controls collected from the whole population U. In this way the complete data 
sample S is composed by np presences (observed in Sp) and nu unobserved values 
(collected in Su). When the binary response Y is rare, this approach represents a naive 
approximation of the standard case-control design, here we present a different 
implementation of the design. Let Z be a stratum variable such that Zi=0 if iSu and 
Zi=1 if iSp. Notice that Zi=1 implies Yi=1 while Zi=0 implies that Yi can assume a 
value in {0, 1}. The relation between Y and Z at the sample level can be represented in 
the following table.

Table 1: Sample composition with respect to Y and Z.

Y/Z Z=0 Z=1
Y=0 n0u 0 n0

Y=1 n1u n1p n1

nu np n

The only quantities known are nu and np (obviously also n1p). We remark that all the 
unknowns can be considered random quantities due to the “censor” effect acting on the 

subsample Su. In particular we can write n1u as 
u

i i
i S

n Y


   , where the symbol  just 

indicates the random nature of the quantity. Now let =P(Y=1) be the prevalence of the 
species in U. Under the assumption that Su is a random sample from the whole 
population U we have that 1[ ]u uE n n . If we assume that the covariates X are 

available for all the sites of the population U, we can use the approach introduced by 
Ward et al. (2009) and developed in a Bayesian framework by Divino et al. (2011). In 
the case-control framework the logistic regression for a generic observation enclosed in 
the sample S with covariates X=x, is given by:
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where s=1 denotes that the site is included in the sample S, (x) is the regression 
function,  and  are the unknown proportion of sampling respectively from the 
absences and the presences. The ratio / adjusts the logistic model under the case-
control design. Following Ward et al. (2009), we can manage presence-only data by 
considering the joint probability distribution of Y and Z and write the full likelihood 
model (see Ward et al. (2009) for details) or alternatively consider the observed 
likelihood, defined only with respect to the distribution of Z, that results in an average 
over Y. In both the likelihood models, the unknown ratio /can be approximated as 

follow: 11
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. That expression can be handled into the estimation algorithm 

through the use of a data augmentation step. In fact, given a current value for (x), it is 
possible to use the predictive probability distribution of Y to have consistent 
simulations of the unobserved variables related to the locations enclosed in Su, then a 
simple summation over Su will result an approximation for the quantity n1u allowing us 
to get available a value for the ratio /. In this work we consider regression functions 
which are linear in the covariates while we present also a model with a spatially 
structured random effect v accounting for the geographical dependence eventually 
introduced by latent factors into the species distribution. We can now write the 
hierarchical Bayesian model. Let  be the vector of hyperparameters with prior p(). 
Conditioned on , the regression parameters s are assumed to be Normal distributed 
while the random effect v is a Gaussian Markov random field. Given β, v and the 
covariate x, the binary response is a Bernoulli random variable with conditional 
probability of occurrence given by ( ) ( 1| 1, , )s x P Y s x    . At the lowest level of 

the hierarchy, the conditional distribution of Z given Y can be derived from the above 
Table 1. Notice that the spatial structure of the random effect v is given by the 
geographical neighborhood system among all sites in the population U. In the following
scheme we describe the MCMC algorithm:

 step 1: initialize , β, v, the unobserved of Y over U and set 1
u

u ii S
n Y


 

 step 2: sample  from P( | Y, Z, β, v)
 step 3: sample β from P(β | Y, Z, )
 step 4: sample v from P(v | Y, Z, ) over U
 step 5: sample Yi from P(Yi | Z, β, vi, xi) over U

Remark that we need to perform the data augmentation (step 4 and step 5) over the 
entire population U for both v and the unobserved responses of Y in order to consider 
the spatial structure of the sites enclosed in both the samples Su and Sp . An important 
feature of this estimation procedure is that we can easily obtain a consistent estimate of 

the  by 1ˆ u
u

u

n

n
  , where 1un is the MCMC average of the values in step 1.

3 Simulation study

In this section we report some simulation results. At first, we considered the situation 
without spatial effect and with only one explicative covariate X. We simulated the 
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binary response Y from the following logistic model: logit ( )x x  , where =-1, 
while the covariate X has been generated from a mixture of two Gaussian components 
with common variance and central values respectively =-2 e =2. A population U of 
N=10000 observations over a regular grid 100x100 has been considered, then we 
randomly sampled the presences in Sp and the “pseudo” absences in Su in a rate of 1:4. 
We fitted the Bayesian model, considering the observed likelihood, for two different 
situations: with prevalence unknown (M1) and with prevalence known (M2). The 
second situation represents our benchmark, ideally we can not do better than that. Both 
the models were fitted assuming the Gaussian N(0,1) as prior distribution for . We ran 
20000 iterations and discarded the first 10000 as burn-in. In Table 2 we report the 95% 
credibility intervals (CI) for  and the estimates for  with respect to different levels of 
dispersion in the covariate X that generated different true prevalence values in the 
population , and with respect to different sizes of S.

Table 2: Simulation results.

Size n
  

CI) ˆu CI) ˆu CI) ˆu

N=50
M1 -0,75:0,45 0,49 -1,21:0,12 0,46 -1,87:-0,12 0,46
M2 -0,80:0,46 0,48 -1,27:0,10 0,46 -1,90:-0,12 0,46

n=500 M1 -1,12:-0,61 0,43 -1,21:-0,69 0,40 -1,10:-0,55 0,41
M2 -1,11:-0,60 0,42 -1,23:-0,69 0,39 -1,11:-0,58 0,41

n=5000
M1 -1,03:-0,95 0,36 -1,16:-0,99 0,37 -1,13:-092 0,40
M2 -1,02:-0,94 0,36 -1,15:0,97 0,37 -1,11:-0,91 0,40

Variance of X 0,25 1,0 4,0

In the second study we introduced the spatial effect u as an intrinsic Gaussian Markov 
random field but we refer to the oral presentation for the details of that experiment.

4 Comments and Conclusion

Results are encouraging, especially in term of predictive capacity. In the first 
experiment, as the sample size increase the prevalence estimates become more 
consistent and closer to the true parameters with respect to all the different levels of 
dispersion in the covariate X. Further work concerns the investigation of the parameters 
identifiability and the overfitting that often results when the spatial effect is enclosed 
into the model.
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