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Abstract In this paper we propose classical and Bayesian Model Averaging (BMA)
models for logistic regression in credit risk measurement. On the basis of a real data
set, we show that Bayesian Model Averaging models outperform classical logistic
regression in terms of percentage of correct classifications and related performance
indicators.
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1 Introduction

In credit risk statistical models are usually chosen according to a model selection
procedure that aims at selecting the most performing structure. The chosen model
is, once selected, taken as the basis for further actions, such as parameter estima-
tion, default prediction and predictive classification. Relying upon a single model
may not be the best strategy. In this paper we investigate whether the usage of more
models, in a model averaging perspective, improves the performance of credit risk
models. To achieve this aim we propose, starting from the most employed credit risk
model - logistic regression - to average results obtained from a collection of models,
using either bootstrapping or a Bayesian perspective.
In order to show how our proposal works, we have used a real data set provided by
a credit rating agency composed of small and medium enterprises, that has already
been considered in the statistical literature.
The paper is structured as follows: in Section 2 we review the Bayesian model aver-
aging techniques; Section 3 reports empirical evidences achieved on a financial data
set; Section 4 ends the paper and reports further ideas of research.
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2 Bayesian Model Averaging: a review

Typically, standard statistical practice ignores model uncertainty. BMA (Hoeting et
al., 2001) provides a coherent mechanism for accounting for this model uncertainty.
It is a technique designed to help account for the uncertainty inherent in the model
selection process, something which traditional statistical analysis often neglects. By
averaging over many different competing models, BMA incorporates model uncer-
tainty into conclusions about parameters and predictions. BMA has been applied
successfully to many statistical model classes including linear regression, general-
ized linear models, proportional hazard models, and discrete graphical models, in
all cases improving predictive performance.
Let M = (M1, ...,Mk) be the set of models under consideration. A model may be
defined by a variety of attributes such as the subset of explanatory variables in the
model or the form of the error variance. If ∆ is the quantity of interest, such as a
future observable or a model parameter, then the posterior distribution of ∆ given
data Z is equal to:

p(∆ |Z) =
K

∑
k=1

p(∆ |Z,Mk)p(Mk|Z). (1)

This is an average of the posterior predictive distribution under each of the models
considered, weighted by the corresponding posterior model probability. The poste-
rior probability for model Mk is given by:

p(Mk|Z) =
p(Z|Mk)p(Mk)

∑K

l=1 p(Z|Ml)p(Ml)
,

where p(Z|Mk) is the integrated likelihood of model Mk, θk is the vector of param-
eters of model Mk, p(θk|Mk) is the prior density of the parameters under model Mk,
p(Z|θk,Mk) is the likelihood and p(Mk) is the prior probability that Mk is the true
model. All probabilities are implicitly conditional on M, the set of all models being
considered. A number of researchers have considered the problem of managing the
summation in equation (1) for a large number of models, some of which are de-
scribed below for specific areas of application. A popular approach is to explore the
space of models stochastically via a Markov chain Monte Carlo approach.
Hoeting, Madigan, Raftery, Volinsky (2001) discuss the historical development of
BMA, provide additional description of the challenges of carrying out BMA, and
describe some solutions to these problems for a variety of model classes.
In this paper we focus on BMA for generalised linear models with a specific focus
on predictive models for binary outcome.
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3 Application

Our empirical analysis is based on annual 1996–2004 data from Creditreform, one
of the major rating agencies for SMEs in Germany.

When handling bankruptcy data it is natural to label one of the categories as suc-
cess (healthy) or failure (default) and to assign them the values 0 and 1 respectively.
Therefore, our data set consists of a binary response variable (default) values Yi and
a set of explanatory variables: X1i, ...,Xki that are quantitative financial ratios and
X
∗
1i
, ...,X∗

pi
that are qualitative features. The sample size available is composed of

1000 SMEs. The observed probability of default is equal to 12.5%.
In a one step perspective, we have used the whole data set, putting together quan-

titative and qualitative variables. Classical logistic regression analysis (CLR) allows
to select the best predictive model and to obtain parameter estimates conditionally
on such model. In order to assess predictive ability, we have implemented a cross-
validation procedure: we have used 70% of the observations as a training set and
30% as a validation set on which to calculate predictive accuracy.

As discussed in the previous section, we have then tried to improve CLR analysis
by means of a BMA approach. However, in order to better compare in terms of
efficiency BMA with CLR we have carried out a bootstrapped version of BMA and
CLR. The BMA analysis has been conducted assuming that all models are equally
likely a priori and implementing the algorithm described in Hoeting et al., 2001.

We first check if the different models are different in terms of predictive ability.
To reach this objective, on the basis of the percentage of correct classifications (PC),
we have compared the models. Table 1 reports the results obtained using a large set
of cut offs. From Table 1 we note that fixing a cut off greater than 0.4 the BBMA is

cut off CLR BMA BCLR BBMA
0.1 0.8168 0.8125 0.125 0.8127
0.2 0.8728 0.8772 0.8545 0.857
0.3 0.8987 0.8944 0.9084 0.899
0.4 0.9073 0.9019 0.8922 0.912
0.5 0.9106 0.9084 0.875 0.912
0.6 0.9084 0.8998 0.875 0.912
0.7 0.8901 0.8847 0.875 0.9234
0.8 0.875 0.8761 0.875 0.9238
0.9 0.8739 0.8739 0.875 0.938
1 0.875 0.875 0.875 0.938

Table 1 Correct classification for different cut offs

the best model in terms of correct classifications. We have then computed the AUC
with the relative confidence interval on the basis of a bootstrap percentile method
(see e.g. Hosmer et al, 2000). Table 2 shows for all models the AUC and the cor-
rect classification rate. From Table 2 the BBMA model shows the best performance.
In addition we have obtained that the AUC test based on the confidence intervals
confirms that the AUCs computed are significantly different from 0.7. In business
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Model AUC
Classical Logistic Regression 0.837

BMA Logistic Regression 0.8916
Boostrapped Classical Logistic Regression 0.913

Boostrapped BMA Logistic Regression 0.945

Table 2 Model assessment based on AUC

practice, this means that the discrimination made by the corresponding model is ac-
ceptable. For the sake of comparison, we have also compared our approach based
on one step integration with the results described in Figini and Giudici 2011 which
are based on a two step model. In the merged model proposed in Figini and Giudici
2011, the obtained AUC is equal to 0.909 and the percentage of correct classifica-
tion using a cut off equal to 0.8 is equal to 0.915.
Therefore, our proposal leads to better results in terms of model performance.
On the basis of the results achieved we think that Bayesian averaged models lead
better results in terms of predictive performance, while classical approaches provide
an efficient and parsimonious method to select the most important variables.

4 Conclusions

In this paper we have presented a comparison between classical and model aver-
aged models for credit risk estimation. Our results suggest that model averaged
models could be considered as an alternative to classical logistic regression. In par-
ticular, we have found that, in comparison with classical logistic regression mod-
els, Bayesian Model Averaging provides risk models with superior discriminatory
power and comparable predictive performance.
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