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Abstract Principal Stratification (PS) is a principled framework for addressing
noncompliance issues. Due to the latent nature of principal strata, model-based PS
analysis usually involves weakly identified models and identification of causal ef-
fects relies on untestable structural assumptions, such as exclusion restriction. This
article develops a Bayesian approach to exploit multivariate outcomes to sharpen in-
ferences for weakly identified models within PS. Simulation studies are performed
to illustrate the potential gains in identifiability of jointly modelling more than one
outcome. The method is applied to evaluate the causal effect of a job search program
on depression.
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1 Introduction

Many randomized experiments suffer from noncompliance, which breaks random-
ization, implying that assignment to the treatment rather than the treatment itself is
randomly administered to individuals. In the presence of noncompliance, the treat-
ment actually received is a post-treatment intermediate variable, which is potentially
affected by the assignment and also may affect the response. A standard intention-
to-treat analysis gives a valid inference of the effect of assignment on outcome,
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Fabrizia Mealli
Dipartimento di Statistica “G. Parenti”, Università di Firenze e-mail: mealli@ds.unifi.it
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but usually the goal is to study the effect of receiving the treatment rather than the
assignment.

A principled framework to noncompliance is principal stratification (PS) (Fran-
gakis and Rubin, 2002), a generalization of the instrumental variable approach to
noncompliance by Angrist et al.(1996) and Imbens and Rubin (1997). While PS is
applicable to a wide range of situations involving intermediate variables, such as
truncation by death, mediation, this paper focuses on the special case of noncom-
pliance. A PS with respect to the intermediate variable “receipt of the treatment” is
a cross-classification of units into latent classes defined by the joint potential com-
pliance statuses under both treatment and control. Principal causal effects (PCE),
that is, comparisons of potential outcomes under different treatment levels within
compliance principal strata, are in general the causal estimands of primary interest
in a PS analysis.

Since at most one potential outcome is observed for any unit, compliance princi-
pal strata are generally latent and the key of PS analysis is to address the identifia-
bility issue of PCEs. There are two streams of work in the existing literature regard-
ing this: (1) deriving nonparametric bounds for the causal effects under minimal
structural assumptions (e.g., Manski, 1990); (2) specifying additional structural or
modelling assumptions, such as exclusion restriction, to identify PCEs and conduct-
ing sensitivity analysis to check the consequences of violations to such assumptions
(e.g., Schwartz et al., 2012).

Using auxiliary information from covariates to identify causal effects has been
also discussed (e.g., Jo, 2002). However, the importance of exploiting multiple out-
comes is less acknowledged. In fact, information on multiple outcomes is routinely
collected in randomized experiments and observational studies, but it is rarely used
in analysis unless the goal is to study the relationships between outcomes. Excep-
tions include Jo and Muthen (2001), Mattei et al. (2012) and Mealli and Pacini
(2012). In this article we further investigate the role of multivariate outcomes to
sharpen inferences for weakly identified models within PS, proceeding from a para-
metric perspective, particularly under the Bayesian paradigm.

The article is organized as follows. Section 2 introduces the PS framework and
Section 3 proposes a Bayesian approach to exploit multivariate outcomes to sharpen
inferences for weakly identified models within PS. In Section 4, we perform simula-
tion studies to examine the benefit from using multivariate outcomes under various
scenarios. In Section 5, we re-analyze the Job Search Intervention Study (JOBS II)
using the proposed bivariate approach. Section 6 concludes with a discussion.

2 The principal stratification approach to noncompliance

Discussion of causal inference in this article is carried out under the potential out-
come framework, also known as the Rubin Causal Model (RCM) (Rubin, 1978).
Consider a large population of units, each of which can potentially be assigned a
treatment indicated by z, with z = 1 for treatment and z = 0 for control. A ran-
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dom sample of n units from this population comprises the participants in a study,
designed to evaluate the effect of the treatment on all or a subset of M outcomes
Y = (Y1, . . . ,YM)′.

Assuming the standard Stable Unit Treatment Value Assumption (SUTVA) (Ru-
bin, 1980), for each outcome Ym, we can define two potential outcomes for each
unit, Yim(0) and Yim(1), corresponding to each of the two possible treatment level.
For each unit i, let Yi(z) = (Yi1(z), . . . ,Yim(z))′ be the vector of the potential out-
comes given assignment z.

In the presence of noncompliance, the actual taking of the treatment is beyond
the control of the researcher, therefore there are also two potential treatment receipt
indicators for each unit: Di(0) and Di(1). Let Si = (Di(0),Di(1)) be the joint po-
tential treatment outcomes. Applying the idea of principal stratification, units can
be classified into four principal strata according to their compliance behaviour, de-
fined by Si: compliers (Si = (0,1) = c); never takers (Si = (0,0) = n); always tak-
ers (Si = (1,1) = a); and defiers (Si = (1,0) = d). By definition the principal stra-
tum membership Si is not affected by treatment assignment. Therefore, comparisons
of summaries of Y (1) and Y (0) within a principal stratum, the so-called principal
causal effects (PCEs), have a causal interpretation because they compare quantities
defined on a common set of units. The causal estimands of interest in this article are
the population principal average causal effects for the first outcome:

τs = E(Yi1(1)−Yi1(0)|Si = s), (1)

for s = c,a,n, where τc is the well-known complier average causal effect (CACE).
Since Di(0) and Di(1) are never jointly observed, principal stratum Si is latent.

Specifically, for each unit i and for each post-treatment variable, only one potential
outcome is observed. Let Zi for i = 1, ...,n be the binary variable indicating whether
unit i is assigned to the treatment (Zi = 1) or to the control (Zi = 0). Then, the ob-
served potential outcomes are: Dobs

i = Di(Zi) and Yobs
i = Yi(Zi). Let Z,Dobs,Yobs

denote column vectors/matrices of the corresponding unit-level observed variables.
The other potential outcomes Dmis

i = Di(1− Zi) and Ymis
i = Yi(1− Zi), are miss-

ing. Henceforth, the bold denotes column vectors/matrices of the corresponding
unit-level variables. Without loss of generality, we concentrate on the case of two
outcomes (M = 2). Since we focus on randomized experiments, the following as-
sumption holds by design:

Assumption 1. Randomization of treatment assignment

Pr(Zi|Di(0),Di(1),Yi(0),Yi(1)) = Pr(Zi).

3 Multivariate Bayesian principal stratification analysis

Following Imbens and Rubin (1997), we model the conditional distribution of the
compliance type: πs = Pr(Si = s), s = a,c,d,n; and the conditional distribution
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of potential outcomes given compliance type: f i
sz = Pr(Yobs

i |Si = s,Zi = z;θθθ s,z),
z = 0,1. Let θθθ = (πa,πc,πd ,πn,{θθθ s,z}s=a,c,d,n;z=0,1) be the parameter vector and
let p(θθθ) denote its prior distribution. Then, the posterior distribution of θθθ can be
written as

Pr(θθθ |Z,Dobs,Yobs) ∝ p(θθθ) ∏
i:Zi=1,Dobs

i =1

[
πc f i

c1 +πa f i
a1
]

∏
i:Zi=1,Dobs

i =0

[
πn f i

n1 +πd f i
d1
]

∏
i:Zi=0,Dobs

i =1

[
πa f i

a0 +πd f i
d0
]

∏
i:Zi=0,Dobs

i =0

[
πn f i

n0 +πc f i
c0
]

Without additional assumptions, inference on PCEs, τs, though possible and rel-
atively straightforward from a Bayesian perspective, can be very imprecise, even in
large samples, because models are only weakly identified. Jointly modelling multi-
ple outcomes may help to reduce uncertainty about the treatment effects on the pri-
mary outcomes. Specifically, though additional outcomes do not play extra role in
the compliance model, they can improve the prediction of principal strata member-
ship through the outcome model. In addition, some key substantive identifying as-
sumptions, such as exclusion restriction (ER), may be more plausible for secondary
outcomes than the primary one. This condition is referred to as “partial exclusion
restriction (PER)” in Mealli and Pacini (2012):

Assumption 2. Stochastic Partial Exclusion Restriction

Pr(Yi2(0)|S = s) = Pr(Yi2(1)|S = s) f or s = a,n.

Restrictions on secondary outcomes reduce the parameter space of the joint distri-
bution of all outcomes and in turn the marginal distribution of the primary one.

In our setting a strong monotonicity assumption holds by design, Di(1)≥ Di(0)
and Di(0) = 0 for all i, implying that πd = 0 and πa = 0, so that the population is
only composed of compliers and never-takers. Therefore a simple Bernoulli model
is used for the compliance principal strata membership: Pr(Si = c) = πc, πc ∈ (0,1).

The outcome variables we focus on consists of either two continuous vari-
ables or a continuous variable and a binary indicator. For two continuous out-
comes, conditional on the principal stratum, we assume a bivariate normal distribu-

tion: Yi(z)|Si = s,∼ N2 (µµµ
s,z,ΣΣΣ s,z) , where µµµs,z =

(
µ

s,z
1

µ
s,z
2

)
and ΣΣΣ

s,z =

(
σ

s,z
11 σ

s,z
12

σ
s,z
12 σ

s,z
22

)
,

s = c,n; z = 0,1. In the model for a continuous outcome Y1 and a binary out-
come Y2, we replace Yi2 in the previous normal model by a latent variable Y ∗i2
and assume in addition that Yi2(z) = I(Y ∗i2(z) > 0) with σ

s,z
2 = 1. This is equiva-

lent to assuming a generalized linear model with probit link for Y2: Pr(Yi2(z) =
1|Si = s) = Φ(µs,z

2 ). The full set of parameters is θθθ = {πc,µµµ
s,z,ΣΣΣ s,z}. We as-

sume that parameters are a priori independent. A conjugate prior Beta distribu-
tion is used for the compliance principal strata: πc ∼ Beta(α0,β0). Conjugate prior
distributions are also used for the parameters of bivariate continuous outcome
models: ΣΣΣ

s,z ∼ Inv−Wishartν0((Λ
s,z
0 )−1); and µµµs,z|ΣΣΣ s,z ∼ N2(µµµ

s,z
0 ,ΣΣΣ s,z/ks,z

0 ). For
continuous-binary outcomes, we use semi-conjugate diffused normal prior distri-
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Table 1 True values of parameters of the six simulation scenarios.

µµµc,0 µµµc,1 µµµn,0 µµµn,1 ΣΣΣ
c,0

ΣΣΣ
c,1

ΣΣΣ
n,0

ΣΣΣ
n,1

I
[

2.5
8

] [
0.5
6.5

] [
2.75
12

] [
4.25
13

] [
0.09 0.24
0.24 1

] [
0.01 0.08
0.08 1

] [
0.16 0.16
0.16 4

] [
0.04 0.08

0.082 4

]
II

[
2.5
8

] [
0.5
6.5

] [
2.75
12

] [
4.25
24

] [
0.09 0.24
0.24 1

] [
0.01 0.08
0.08 1

] [
0.16 0.16
0.16 4

] [
0.04 0.12
0.12 9

]
III

[
2.5
8

] [
0.5
6.5

] [
2.75
24

] [
4.25
36

] [
0.09 0.24
0.24 1

] [
0.01 0.08
0.08 1

] [
0.16 0.96
0.96 9

] [
0.04 0.8

0.8 25

]

butions for the mean parameters, µµµs,z ∼ N2(µµµ
s,z
0 ,ΣΣΣ s,z

0 ). For the covariance matrices
ΣΣΣ

s,z, there is no conjugate prior, due to the constraint of σ22 = 1. As in Chib and
Hamilton (2000), we assume a flexible truncated bivariate normal prior for the co-
variance parameters σσσ s,z = (σ s,z

11 ,σ
s,z
12 ): σσσ s,z ∼N2(σσσ

s,z
0 ,V s,z

0 )IA (σσσ s,z) where σσσ
s,z
0 and

V s,z
0 are hyperparameters, A = {σσσ s,z :∈ℜ2 : σ

s,z
11 > (σ s,z

12 )
2} is the region where ΣΣΣ

s,z

is a positive definite matrix, and IA is the indicator function taking the value one if
σσσ s,z is in A and the value zero otherwise.

The joint posterior distribution, Pr(θθθ ,Dmis|Yobs,Dobs,Z), is obtained from a
Markov Chain algorithm that uses the Data Augmentation method (Tanner and
Wong 1987) to impute at each step the missing indicators and to exploit complete
compliance data posterior distributions to update the parameter distribution. .

4 Simulations

To assess the improvement in the estimation of the PCEs by exploiting multivari-
ate outcomes, we conduct simulation studies to compare the posterior inferences
obtained by jointly modelling two outcomes with those by only one outcome. Con-
sistently with the JOBS II data, the primary outcome is considered to be “depression
score”, measured with a 5-point rating scale (1 = not at all distressed to 5 = extremely
distressed). To simplify the computation, we focus on two continuous outcomes, us-
ing alcohol use (in percent) as auxiliary outcome in the simulation study.

Here we present simulation results under three different scenarios, accounting for
different correlation structures between the outcomes for compliers and never-takers
and various deviations from the ER for the secondary outcome. The true simulation
parameters are shown in Table 1 and all simulated data sets have N = 600 sample
units, generated using principal strata probabilities of 0.7 for compliers and 0.3
for never-takers. The simulated samples are randomly divided in two groups, half
assigned to the treatment and half to the control.

Figure 1 shows the histograms and 95% posterior intervals of the PCEs for com-
pliers and never-takers on the primary outcome, in both the univariate and bivari-
ate cases. The results clearly demonstrate that simultaneous modelling of both out-
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Principal Causal Effects for Compliers
I II III

−2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8

Principal Causal Effects for Never-takers
I II III

1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1 1.1 1.3 1.5 1.7 1.9 2.1

True Value Univariate Approach Bivariate Approach

Fig. 1 Simulation Results: Histograms and 95% Posterior Intervals of PCEs for Compliers and
Never-Takers.

comes significantly reduces posterior uncertainty for the causal estimates, providing
considerably more precise estimates of the PCEs for compliers and never-takers.

In addition, the histograms in the upper and lower panels of Figure 1 suggest that
the posterior distributions of the PCEs are much more informative in the bivariate
case. Specifically, histogram (I)s show that the posterior distributions of the PCEs
for compliers and never-takers are somewhat flat in the univariate approach, but
become much tighter in the bivariate case. The improvement is even more dramatic
in scenario (II) and (III), where the histograms show that posterior distributions
of the PCEs for compliers and never-takers are bimodal in the univariate case, but
both become unimodal in the bivariate case. Biases and MSEs (based on posterior
mean) were also calculated (not shown here) and suggest that jointly modelling
the two outcomes reduces the average biases by more than 64% and the MSEs by
more than 79% in these scenarios. Several other scenarios with additional structural
assumptions were also examined: magnitude of the improvement varies, and the
pattern is consistent with what is described here.

5 Application to the JOBS II study

The Job Search Intervention Study (JOBS II) (Vinokur et al., 1995) is a randomized
field experiment intended to prevent poor mental health and to promote high-quality
reemployment among unemployed workers. The intervention consisted of 5 half-
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Table 2 Posterior Distributions of PCEs on Depression for Compliers and Never-takers.

Bivariate Approach Univariate Approach
Without PER With PER Without ER With ER

τc τn τc τn τc τn τc

Mean −0.135 −0.192 −0.211 −0.110 −0.207 −0.097 −0.269
SD 0.157 0.176 0.196 0.229 0.178 0.207 0.170
2.5% −0.486 −0.526 −0.620 −0.587 −0.573 -0.532 −0.621
50% −0.122 −0.197 −0.200 −0.100 −0.201 -0.086 −0.262
97.5% 0.143 0.179 0.144 0.306 0.123 0.281 0.045
Width PCI0.95 0.629 0.706 0.764 0.893 0.696 0.812 0.666

Note that PER in the bivariate model is for remployment, whereas ER in the univariate model is
for depression.

day job-search skills seminar. The control condition consisted of a mailed booklet
briefly describing job-search methods and tips. Our analysis focuses on a sample of
398 subjects who were at high-risk of depression.

Since the treatment condition is only available to the individuals assigned to the
intervention in JOBS II, there is no defiers and always-takers. Noncompliance arises
in JOBS II because a substantial proportion (45%) of individuals invited to partic-
ipate in the job-search seminar did not show up to the intervention. Our focus is
on estimating causal effects of the intervention on a depression score measured six
months after the intervention, relaxing ER, but using reemployment status as sec-
ondary outcome. ER on depression may be controversial, because, for example,
never-takers randomized to the intervention might feel more demoralized by inabil-
ity to take advantage of the opportunity. We use reemployment status as secondary
outcome.

Table 2 reports summaries of the posterior distributions of PCEs for compliers
and never-takers on depression in the bivariate (columns 1 through 4) and univariate
(columns 5 through 7) case. Although the benefits of the bivariate approach are not
pronounced, jointly modelling the two outcomes improves inference: the bivariate
approach (without PER) provides more precise estimates of the PCEs for compliers
and never-takers, and tighter 95% posterior credible intervals. Also it is worth noting
that the bivariate approach leads to posterior distributions of τc and τn cantered at
different means and medians. In the light of the simulation results, which show that
jointly modelling two outcomes generally reduces the average biases, these findings
make the bivariate estimates more faithful, suggesting that the univariate estimates
may be affected by larger biases.

6 Discussion

We develop a Bayesian parametric bivariate model that exploits multiple outcomes
of different types to improve the estimation of weakly identified causal estimands.
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Although we focus on randomized experiments with noncompliance, our approach
is immediately applicable to casual inference problems with alternative confounded
post-treatment variables, and also in observational studies, whenever the exclusion
restriction assumptions for the instrument are often questionable.

Our approach has several benefits. First, the Bayesian approach provides a refined
map of identifiability, clarifying what can be learned when causal estimands are in-
trinsically not fully identified, but only weakly identified. Second, in a Bayesian
setting, the effect of relaxing or maintaining assumptions (regardless of structural
or modelling) can be directly checked by examining how the posterior distributions
for causal estimands change, therefore serving as a natural framework for sensitivity
analysis. Third, the use of multiple outcomes improves model identifiability, leading
to smaller posterior variance of the parameters. However the additional information
provided by secondary outcomes is obtained at the cost of having to specify more
complex multivariate models, which may increase the possibility of misspecifica-
tion. Therefore, model checking procedures to ensure sensible model specification
is a valuable topic for future research.
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