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Abstract Latent class models have been widely used to evaluate the performance
of veterinary and human diagnostic tests, in the absence of a gold standard. In this
work, we explore Bayesian latent class models, with and without restrictions, in dif-
ferent populations. We previously reported the Bayesian latent class analysis of the
malaria dataset (n =3317) and now we apply a similar approach to a smaller dataset
in the context of canine dirofilariasis (n =308). Although the last study presents
a small sample size, it was important to obtain the first estimates of the prevalence
(and performance measures of diagnostic techniques) of canine dirofilariasis in three
districts of Portugal, taking into account the relationship with human dirofilariasis.
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1 Introduction

An active field of biostatistical research has been Bayesian Latent Class Models
(BLCM) which are used to estimate the prevalence, sensitivities and specificities in
the absence of a gold standard. In this context, BLCM are widely used by the veteri-
nary community [1, 14], where subpopulations (e.g. herds) appear naturally or are
artificially created (e.g. [24]). The most popular model is the one that assumes differ-
ence in terms of prevalence and constant performance measures across populations.
In practice, sometimes, this last aspect may be unrealistic and other models must be
considered. Compared with a frequentist perspective, Bayesian approaches may be
helpful when dealing with non-identifiable models, using informative priors, impos-
ing constraints or admitting more than one population to avoid this problem. In case
of one population, Menten el al. [10] present several BLCM in the study of the diag-
nosis of visceral leishmaniasis and Limmathurotsakul et al. [7] used similar models
for melioidosis. In malaria context, Speybroeck et al. [20] present a contribution of
a Bayesian approach to estimate the prevalence of malaria, applying ELISA, PCR
and microscopy to datasets from Peru, Vietnam, and Cambodia separately. Ochola
et al. [15] use a Bayesian formulation of the latent class model of Hui and Wal-
ter (two populations) to estimate the diagnostic accuracy of the malaria diagnostic
techniques, based on a systematic review. Depending on the sampling scheme or the
objectives of the analysis, the modelling versatility of the BLCM can be enhanced
by incorporating constraints to explore differences and similarities between subpop-
ulations in terms of prevalence, sensitivities and specificities. Recently, Gonçalves
et al. [5] address this type of models and provide estimates to the malaria infection
prevalence and performance measures in four subpopulations simultaneously based
on a post-stratified analysis using two binary categorical variables: age groups (less
than 5 years, greater than or equal to 5 years) and fever status (febrile, afebrile). In
this work, we explore a dataset related with dirofilariasis diagnostic tests, in three
districts of Portugal, when a stratified sampling was used and, therefore, we have
natural populations (districts) under study. As the best of our knowledge, this type
of models were not previously used in dirofilariasis diagnostic tests.

In this work, firstly, we give a brief description of the dirofilariasis dataset (Sec-
tion 2) after we discuss the validation of the Hypothesis of Conditional Indepen-
dence (HCI) in order to decide if the simplest and most parsimonious two latent
class model describes the data adequately or if more complex models with depen-
dencies between tests are needed. In the Section 4 we define the models. Finally, we
present the results and final remarks.

2 Applications

Canine dirofilariosis is caused by D. immitis transmitted by mosquitoes. Diagnosis
of canine dirofilariasis is performed using different methods which present difficul-
ties in the interpretation of the results [2]. In Europe, the Mediterranean countries
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present the highest prevalences [11]. In Portugal, in order to improve the epidemi-
ological knowledge of the canine and human dirofilariosis, a research project has
been implemented since 2011 in three districts of the centre-south areas - Setúbal,
Santarém, and Coimbra. In the next sections, the districts (and sample sizes) are de-
noted by 1. Setúbal (n1 = 40), 2. Santarém (n2 = 169) , and 3. Coimbra (n3 = 99).
In this work we analise a sample of 308 kennel dogs from a preliminary survey on
canine population. Several diagnostic tests are under evaluation and, in this study,
we explore three techniques denoted by 1. a commercial antigen kit (WITNESS
Dirofilaria), 2. the Modified Knott’s technique and 3. Blood smear.

3 Hypothesis of Conditional Independence

The HCI in some medical problems may not be a realistic assumption, for example,
when the two tests are based on a similar biological phenomenon (e.g. [10, 17]). The
diagnostic of local dependence has been discussed by several authors [3, 6, 16, 17]
and different methods have been proposed to validate this hypothesis. Among oth-
ers, Hagenaars [6] suggests the analysis of the standardized residuals for each pair
of manifest variables. Garrett and Zeger [3] developed the log odds ratio check
(LORC) plot, to compare the log odds ratio for the observed and predicted two-way
cross classification tables for each pair of manifest variables. Qu et al. [16] propose
the correlation residual plot, which is obtained by plotting residuals of pairwise cor-
relation coefficients, defined as the difference between the observed and expected
correlations. Sepúlveda et al. [17] propose the use of Biplot representations based
on generalized linear models to identify conditional dependence between pairs of
manifest variables within each latent class. Subtil el al. [21] developed a simulation
study, considering local dependence between pairs of manifest variables, and the ap-
plication of different tools revealed some problems in the detection of the violation
of the HCI.

4 Bayesian Latent Class Models

The LCM approach admits a binary latent variable, Y , whose categories are called
latent classes and indicate the disease status: Y takes the value 1 if the disease or
infection is present and 0 otherwise. The outcomes of p diagnostic tests in the jth
subpopulation/district are expressed using manifest binary variables1, Xi j, assuming
the value 1 if the i-th diagnostic test is positive and 0 otherwise, i = 1, . . . , p (p = 3
in our example), j = 1, ...,J, where J denotes the number of subpopulations (J = 3).
The model parameters include the prevalence in the three districts, η j, j = 1,2,3,

1 To avoid burdening the notation, the index corresponding to each individual is omitted.
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the sensitivities and specificities of the three tests in the three districts, denoted by
Sei j and Spi j, respectively, i = 1,2,3; j = 1,2,3.

In our work, the jth subpopulation counts (O j) of the different patterns of test
results (in a total of 23 possible patterns) follow a multinomial distribution:

O j|Sei j,Spi j,η j ∼Multinomial (Pr j,n j),
where n j is the sample size of jth subpopulation, j = 1,2,3, i = 1,2,3, and Pr j is a
vector of probabilities of observing the individual pattern x j = (x1 j,x2 j,x3 j)

t of test
results in population j.

Under the HCI, a generic element of the vector Pr j is given by

P(X j = x j) = η j

p

∏
i=3
{Se

xi j
i j (1−Sei j)

1−xi j}+(1−η j)
p

∏
i=3
{Sp

1−xi j
i j (1−Spi j)

xi j}.

Additionally, it is possible to model conditional dependence including covariance
between pairs of tests, in a similar way to the approach of [10] for a unique popu-
lation. For example, if we assume that tests X2 and X3 are correlated in the infected
class, and in a similar way in all populations, the probability of an outcome pattern
xj is:

P(X j = x j) = η j{Se
x1 j
1 j (1−Se1 j)

1−x1 j}{Se
x2 j
2 j Se

x3 j
3 j (1−Se2 j)

1−x2 j(1−Se3 j)
1−x3 j +

+ (−1)(x2 j−x3 j)cov23|Y=1}+(1−η j)
p

∏
i=3
{Sp

1−xi j
i j (1−Spi j)

xi j},

where cov23|Y=1 = cov(X2,X3|Y = 1).
To analyze the three districts simultaneously, a product multinomial distribu-

tion is considered simply using the product of three multinomial distributions since
the subpopulations are independent. The general model (with parameters varying
across districts), denoted by M1, may be simplified to obtain other simpler models,
using constraints. The simplest model (denoted by M2 in next section) with con-
straints considers a different prevalence for each district and equal sensitivities and
specificities of each test across districts, i.e., Sei j = Sei,∀ j and Spi j = Spi,∀ j. This
model is commonly used to evaluate diagnostic tests in two or more populations (see
[22, 15, 1]). The general model (no constraints are imposed on prevalence, sensi-
tivities and specificities across subpopulations) has 21 parameters and the simplest
model has only 9 parameters to be estimated, using a Bayesian approach. Intro-
ducing different constraints into M1, several other BLCM can be fitted via MCMC
techniques, using Gibbs sampling.

In terms of informative priors, in the malaria dataset, we used Beta distributions
with α and β parameters – Beta(α,β ) – taking advantage of its flexibility, choosing
left-skewed distributions to suggest a trend to a poor performance of a test or a low
prevalence and a rigth-skewed distribution when a good performance seems to be
appropriate. The elicitation of an informative prior is a hard and subjective process
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that needs a careful dialogue with experts and, in the canine dirofilariasis dataset
analysis, the elicitation of informative priors is still in progress.

5 Results

As a first step to evaluate the validation of HCI, using the tools mentioned before
(Section 2), in each district separately and considering a pool with the three districts,
there is no evidence of violation of the HCI. In the malaria dataset ([5]), the decision
was the same but the sample size is much larger. To evaluate if an increase of the
sample size shows evidences of violation, we explore artificial situations where the
sample sizes are 2n,4n, and 10n (or adding some small constant to prevent situations
where the frequency is zero), and the empirical distributions are the same or simi-
lar. The biplot representation suggests a possible dependence between the Modified
Knott’s and blood smear tests, when the sample size is 4n and 10n (data not shown).
This fact might suggest a possible model with dependence between those two tests.

We explored the general model M1 and the simplest model M2 using WinBugs
(see tables 1 and 2). Inferences were based on 20,000 iterations, after discarding
an initial burn-in of 5,000 iterations with convergence assessed by running mul-
tiple chains from various starting values [4]. All parameters were estimated with
the highest probability density (HPD) intervals for parameters of interest, using the
package BOA 1.1 7-2 [19]. Convergence was monitored by the standard diagnostic
procedures based on a visual assessment of the long chains for each parameter and
using the Gelman-Rubin and the Raftery-Lewis measures, also included in BOA.
For both M1 and M2 there was no evidence of failure in convergence, since, in
the case of the Gelman-Rubin diagnostic, R < 1.2 for all parameters and, for the
Raftery-Lewis measures, all the dependence factors DF < 5 [19]. Among other, the
Deviance Information Criterion (DIC) and a version of Bayesian p-value based on
Pearson statistics, were also calculated as described by Nérette et al.[13]. In spite
of the subjectivity, this version of Bayesian p-value suggests the lack of fit when
p-values near 0 or 1 and an adequate model fit if p-value close to 0.5 [10, 12]. The
values corresponding to models M1 and M2 are indicated in the caption of tables 1
and 2.

Based on this preliminary study, according to M1, the prevalence of D. immitis
infection in dog increases from North to South districts, being higher in the dis-
trict of Setúbal (18.4% – [5.8-32.1]), followed by Santarém (13.5% – [8.4-18.7])
and Coimbra (9.0% – [3.7-14.6]). As expected, some of the 95% HPD intervals are
very wide, particularly, in the district of Setúbal (sample size only with 40 dogs).
In terms of diagnostic tests, the commercial antigen kit (WITNESS Dirofilaria)
presents lower values for the sensitivity and the specificity. In terms of specificities,
all tests give posterior means (an medians) above 90%. The inter-district variations
may be justified by ecological conditions favoring high densities of Dirofilaria vec-
tors and that may explain the higher parasitic loads (data not shown) seen in dogs.
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Table 1 Bayesian estimates of prevalence, sensitivities and specificities, given by posterior means,
medians and 95% HPD intervals, with non-informative priors, by district, using model M1
(DIC=72.194; p-value: 0.429).

Parameters mean median 95% HPD

η1 0.184 0.177 0.058 - 0.321
η2 0.135 0.133 0.084 - 0.187
η3 0.090 0.088 0.037 - 0.146
Se11 0.579 0.583 0.252 - 0.910
Se12 0.625 0.629 0.433 - 0.808
Se13 0.702 0.716 0.436 - 0.947
Se21 0.838 0.874 0.563 - 1.000
Se22 0.957 0.970 0.873 - 1.000
Se23 0.890 0.916 0.692 - 1.000
Se31 0.687 0.699 0.371 - 1.000
Se32 0.956 0.969 0.872 - 1.000
Se33 0.891 0.918 0.692 - 1.000
Sp11 0.915 0.923 0.818 - 0.999
Sp12 0.973 0.976 0.947 - 0.995
Sp13 0.947 0.951 0.901 - 0.987
Sp21 0.923 0.932 0.824 - 1.000
Sp22 0.993 0.995 0.980 - 1.000
Sp23 0.989 0.992 0.968 - 1.000
Sp31 0.967 0.977 0.903 - 1.000
Sp32 0.993 0.995 0.980 - 1.000
Sp33 0.989 0.992 0.968 - 1.000

Table 2 Bayesian estimates of prevalence, sensitivities and specificities, given by posterior means,
medians and 95% HPD intervals, with non-informative priors, by district, using model M2 (DIC=
63.443; p-value: 0.3132).

Parameters mean median 95% HPD

η1 0.189 0.184 0.071 - 0.314
η2 0.135 0.133 0.085 - 0.187
η3 0.090 0.087 0.039 - 0.147
Se1 0.642 0.644 0.491 - 0.792
Se2 0.972 0.981 0.919 - 1.000
Se3 0.924 0.932 0.834 - 0.999
Sp1 0.964 0.965 0.941 - 0.984
Sp2 0.992 0.994 0.980 - 1.000
Sp3 0.996 0.997 0.989 - 1.000
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6 Final Remarks

Even if forthcoming field studies are needed to better understand this findings in the
three districts, this preliminary study showed the existence of canine dirofilariosis.
Some studies show similar prevalence in the canine and human populations [11].
Theses findings may reveal the possibility of occurrence of human pulmonary diro-
filariosis in the inhabitants of those districts and physicians should be alerted to this
health problem. As new studies are planned in a near future, additional statistical
modelling will be explored. Although the large sample sizes are not always possible
in practice, statistical analysis continues to be useful for decision-making.
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5. Gonçalves, L., Subtil, A., Oliveira, M.R., Rosário, V., Lee, P., Shaio, M.-F.: Bayesian latent

class models in malaria diagnosis. Under revision (2012)
6. Hagenaars, J.: Latent structure models with direct effects between indicators. Sociological

Methods and Research 164: 379–405 (1988)
7. Limmathurotsakul, D., Jamsen, K., Arayawichanont, A., Simpson, J.A., White, L.J., et al.

Defining the true sensitivity of culture for the diagnosis of melioidosis using Bayesian Latent
Class Models. PLoS ONE 5: e12485 (2010)

8. Lunn, D., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS – a Bayesian modelling frame-
work: concepts, structure, and extensibility. Statistics and Computing 10: 325–337 (2000)

9. Martinez, E., Louzada-Neto, F., Derchain, S., Achcar, J., Gontijo, R., et al.: Bayesian estima-
tion of performance measures of cervical cancer screening tests in the presence of covariates
and absence of a gold standard. Cancer Informatics 6: 33–46 (2008)

10. Menten, J., Boelaert, M., Lesaffre, E.: Bayesian latent class models with conditionally depen-
dent diagnostic tests: A case study. Statistics in Medicine 27: 4469–4488 (2008)

11. Montoya-Alonso JA, Carretn E, Corbera JA, Juste MC, Mellado I, Morchn R, Simn F. Current
prevalence of Dirofilaria immitis in dogs, cats and humans from the island of Gran Canaria,
Spain. Vet. Parasitol. 176(4):291–4 (2011)

12. Neelon, B., O’Malley, A.J., Normand, S.L.T.: A Bayesian two-part latent class model for
longitudinal medical expenditure data: Assessing the impact of mental health and substance
abuse parity. Biometrics 67: 280–289 (2011)
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